IEEE-CYBER

Changbai Mountain, China July 27-31, 2022

The 12th IEEE International Conference on

CALE REPORTECHNOLOGY in Automation Control and Intelligent Systems

PROGRAM

The 12th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems

IEEE-CYBER 2022

Conference Digest

Changbai Mountain, China July 27-31, 2022

IEEE-CYBER 2022 PROCEEDINGS

IEEE Catalog Number: ISBN:

CFP22CYB-ART 978-1-6654-7267-8

Copyright and Reprint Permission:

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2022 by IEEE.

The Institute of Electrical and Electronics Engineers, Inc.

Welcome Message

Welcome to the 12th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems. The IEEE-CYBER is a key international conference focusing on advanced research areas related to cyber physical systems, control/automation, robotics, Internet of things, and sensor network. This year, the IEEE-CYBER conference will be held from July 27 to July 31, at the Wanda Jin Resort Changbaishan, Changbai Mountain, China, with the spirit of bringing together researchers and engineers from all over the world to present their latest research findings, accomplishments, innovations, and visions in the related fields.

With 361 paper submissions from 9 countries or regions, 236 papers have been selected for presentation at the conference after going through a rigorous review process. The technical program of the IEEE-CYBER 2022 consists of 3 plenary talks, 3 keynote talks, 21 technical sessions organized into 3 parallel tracks, and 4 poster sessions. The goal of IEEE-CYBER 2022 is to create an opportunity for participants to present their latest research results to international audiences. Moreover, networking with other researchers has always been a cornerstone of the IEEE-CYBER 2022, including the welcome reception, banquet, and farewell reception. We hope the IEEE-CYBER 2022 will be a valuable, memorable, and exciting platform for people to exchange ideas and information, identify new research interests, establish collaborations, make friends, and find new opportunities for their careers.

The IEEE-CYBER 2022 will give out three technical awards: *Best Conference Paper Award*, *Best Student Paper Award*, and *Best Poster Award*. The nominated papers are arranged in separate sessions for presentation, which is convenient for those who specially want to attend the presentations from the nominees.

We would like to express our deepest gratitude to the great contributions from the Program Committee members, the Organizing Committee members, Award Committee members, Technical Committee members, Publicity Committee members, Finance Committee members, local staff, and student volunteers. The IEEE-CYBER 2022 would not have been possible without your commitment and efforts. Last but not least, our heartfelt thanks go to the authors, the reviewers, the conference participants, and the sponsors. It is your participation and contribution that will make the IEEE-CYBER 2022 unique, enjoyable, and successful.

Besides enjoying the technical programs and networking activities during the conference, we highly suggest you spend some time enjoying Changbai Mountain.

Finally, we wish you a wonderful and joyful stay in Changbai Mountain, China!

General Chair Diansheng Chen Beihang University, China

Technical Committee Chair Imad H. Elhajj American University of Beirut, Lebanon

Program Chair

Chengzhi Su Changchun University of Science and Technology, China

Program Co-Chair

Lianqing Liu Shenyang Institute of Automation, CAS, China

CYBER 2022 Conference Committee

Honorary General Chairs	
Ning Xi	The University of Hong Kong
Haibin Yu	Shenyang Institute of Automation, CAS
Tianmiao Wang	Beihang University
Jie Zhao	Harbin Institute of Technology
General Chair	Diansheng Chen, Beihang University
General Co-Chairs	Jianda Han, Nankai University
	Xinyu Wu, Shenzhen Institutes of Advanced Technology, CAS
	Heping Chen, Texas State University
	Kazuhiro Kosuge, Tohoku University
	Zengguang Hou, Institute of Automation, CAS
	Xingguang Duan, Beijing Institute of Technology
	Hongliu Yu, University of Shanghai for Science and Technology
	Rong Xiong, Zhejiang University
	Hongbo Wang, Fudan University
	Shijie Guo, Hebei University of Technology
	Guohui Tian, Shandong University
Program Chair	Chengzhi Su, Changchun University of Science and Technology
Program Co-Chairs	Lianqing Liu, Shenyang Institute of Automation, CAS
	Rui Song, Shandong University
	Shuo Wang, Institute of Automation, CAS
	Yanhe Zhu, Harbin Institute of Technology
	Bo Tao, Huazhong University of Science and Technology
	Xuguang Lan, Xi'an Jiao Tong University
	Xinjun Sheng, Shanghai Jiao Tong University
	Jian Li, Beijing University of Posts and Telecommunications
	Jing Xu, Tsinghua University
Organizing Committee	Jieqiong Lin, Changchun University of Technology
Chairs	Lina Hao, Northeastern University
	Bingtuan Gao, Southeast University
	Lingli Yu, Central South University
	Ming Fang, Changchun University of Science and Technology
Publication Chair	Zhidong Wang, Chiba Institute of Technology
Publicity Chair	Wei Wang, Robot Technique and Application
Local Arrangement	Bangcheng Zhang, Changchun University of Technology
Chairs	Qi Hu, Jilin Institute of Robotics
	Keyi Wang, Harbin Engineering University
	Guojin Tan, Jilin University

Award Committee	Li Wen, Beihang University
Chairs	Xiaoqin Zhou, Jilin University
Technical Committee	Imad H. Elhajj, American University of Beirut
Chairs	Long Cheng, Institute of Automation, CAS
	Lun Xie, University of Science and Technology Beijing
	Uchechukwu Wejinya, American University of Arkansas
	Jianmin Li, Tianjin University
	Guoru Zhao, Shenzhen Institutes of Advanced Technology, CAS
	Fei Chen, Chinese University of Hong Kong
	Ningbo Yu, Nankai University
	Lan Wang, Harbin Engineering University
	Peng Su, Beijing Information Science and Technology University
	Zhan Yang, Soochow University
	Changsheng Li, Beijing Institute of Technology
	Ziqiang Zhang, Beijing University of Technology
	Chunjie Chen, Shenzhen Institutes of Advanced Technology, CAS
	Zhen Li, Institute of Automation, CAS
	Hao Sun, Hebei University of Technology
	Junmao Yin, Beijing Specialized Machinery Institute, CASIC
	Haiyuan Li, Beijing University of Posts and Telecommunications
	Yongkang Jiang, Shenzhen Institutes of Advanced Technology, CAS
	Chong Li, Tsinghua University
	Yangwei Wang, Northeast Forestry University
	Guoteng Zhang, Shandong University
	Zhaoliang Peng, Da-Jiang-Innovations
	Sitong Lu, North China University of Technology
Finance Chair	Ying Xu, Beihang University

Technical Program Committee

Chongjing Cao Fei Chen Liguo Dai Xinjian Fan Xiangsheng Gao Wenjie Hu Huiyang Hui Niandong Jiao Gongxin Li Longhai Li Pan Li Zhen Li Yangyang Lin Xiaoming Liu Zenglei Liu **Jialin Shi** Gan Sun Dong Wang Hongbo Wang Shouhui Wang Wenxue Wang Fanan Wei Bokai Xuan Zhan Yang Shuai Yuan Chuang Zhang Gaowei Zhang Hongying Zhang Zihua Zhang Xingang Zhao

Wujing Cao Heping Chen Yujie Deng Huijuan Feng Zhi Han Chaolei Huang **Jiguang Jiang** Ran Jiao Haiyuan Li Miao Li Peng Li Wenfeng Liang Fei Liu Yuan Liu Sitong Lu Chengzhi Su Hao Sun Enguo Wang Jinghua Wang Shuopeng Wang Xin Wang Yuan Wei Wenguang Yang Haibo Yu Xiaofeng Yue Chunzhao Zhang Guoteng Zhang Mingzheng Zhang Ziqiang Zhang Zengxu Zhao

Chunjie Chen Xi'ai Chen Mingjie Dong **Bingtuan Gao** Qi Hu Yunfei Huang Yongkang Jiang Changsheng Li Jian Li Minglin Li Yingtian Li Wenyuan Liang Xiaodong Liu Yunpeng Liu Huiyao Shi Peng Su Tao Sun Gang Wang Lan Wang Weigun Wang Yangwei Wang Tanbo Xu Yongliang Yang Lingli Yu Zhikun Zhan Feng Zhang Hao Zhang Tengyu Zhang Wenxiu Zhao

CYBER 2022 Sponsors

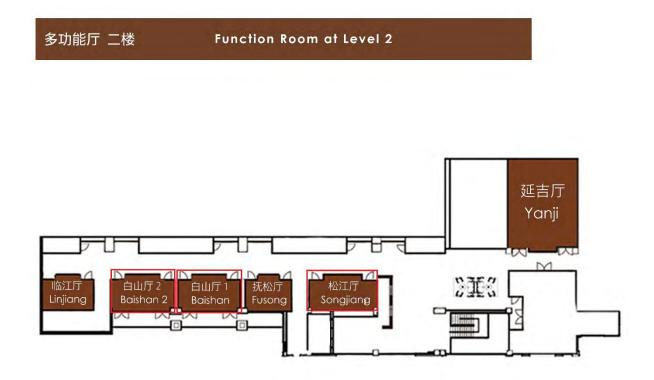
We acknowledge the support of the following Sponsors to the 12th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER 2022).

GENERAL INFORMATION

Conference Date and Venue

Date: July 27-31, 2022 Venue: Wanda Jin Resort Changbaishan, Changbai Mountain, China

Registration Desk


July 27 (Wednesday)	14:00 - 18:00
July 28 (Thursday)	08:20 - 18:00
July 29 (Friday)	09:00 - 18:00
July 30 (Saturday)	09:00 - 16:00

Conference Events

Welcome Dinner	July 27	18:00
Lunch	July 28	11:50 - 13:05
Conference Dinner	July 28	18:00
Lunch Conference Banquet and Award Presentation	July 29 July 29	12:45 - 14:00 18:00
Lunch	July 30	12:15 - 13:30
Farewell Dinner	July 30	18:00
Tour	July 31	08:30-17:30

Floor Map

Official Language

The official language of the conference is English.

All presentations, including discussions and paper submissions, shall be made in English.

Conference Attire

Casual attire is generally recommended for the Welcome and Farewell Receptions while a business suit or a white shirt with a neck-tie at all technical sessions and at the Conference Banquet.

Presentation Specifications

In each oral presentation room, one LED projector will be available. The presenters have to bring their own laptops. The presenters should prepare PowerPoint Slides to facilitate their presentations. The slides and the presentations must be in English. Please test the slides before the session starts to avoid potential format problems caused by different software versions.

The duration for each category of oral presentation is listed below:

- Plenary Lectures are scheduled for 50 minutes (including Q&A) each.
- Keynote Lectures are scheduled for 40 minutes (including Q&A) each.
- Regular Sessions are scheduled for 12 minutes with 3 min Q&A each.

Poster Specifications

Poster session represents an effective and valuable means for authors to present their research results. It offers an opportunity of meeting with interested attendees for indepth scientific and technical discussions and establishing new collaborations. Therefore, it is important that you display your results clearly to attract people who have an interest in your team's research work.

Your poster should cover the KEY POINTS of your paper, which include but are not limited to background, methods, results, and conclusion. Make your poster as self-explanatory as possible. This will save you time for discussions and questions with fellow researchers.

POSTER DIMENSIONS

- Your poster SHOULD have the following dimensions:
- Poster Size: 90cm wide x 120cm high.
- Please note that printing out your submitted full paper in A4 size format is NOT acceptable as a poster.

POSTER CONTENT

- **Title:** The title of your poster should appear at the top with lettering of at least **42 pt** font size). Below the title, place the names of authors and their affiliations.
- **Text:** Text should be readable from five feet away. Use a minimum font size of **17 pt**. Keep the text brief. Try to use text to introduce the study, explain visuals, and direct viewers' attention to significant data trends and relationships portrayed in the visuals, state and explain the interpretations that follow from the data. It is also a good idea to put future research plans or questions for discussion with viewers in your text.
- **Figures:** Each figure should have a brief title. Figures should be numbered consecutively according to the order in which they are first mentioned in the text. Try to use color figures rather than only black and white text to make your poster attractive and highlight the important technical content of your paper. Make sure that the text and the visuals are integrated.

About Changbai Mountain

Changbai Mountain is a volcano on the border between North Korea and China. This mountain is 54.5% in North Korean territory, and 45.5% in China. The China name is Changbai-shan. It means Snow piles up on the large mountain. The Korean name is Baekdu-san. It means White head mountain.

Changbai Mountain has a large crater lake, It is called Heaven Lake. Chinese called "tianchi" lake. It is 2,744 meters above sea level. The Beijing Olympic torch was lit on Baekdu/Changbai Mountain. Heaven Lake is the caldera made by a gigantic eruption in 969 AD (± 20 years).

Attractions

Tian Chi (Heaven Lake)

Changbai Waterfall

The Green Deep Pond

Julong Hot Springs

Plenary Talks

Plenary Talk 1: Thursday, July 28, 2022 08:30-09:20 Session Chair: Diansheng Chen, Beihang University

Reflections on Opportunities and Challenges Facing Scientific and Technological Achievements Transformation

Tianmiao Wang

Professor Beihang University, China

Abstract:

With the historic opportunities emerging in past years, scientific and technological innovation and transformation have undergone new changes and characteristics. Ten disruptive technologies and five trillion potential markets may appear in the future. However, there have been a lot of problems in the transformation of scientific and technological achievements, such as long period, low success rate and low rate of return. Therefore, to promote transformation of scientific and technological achievements, China has issued a series of policies. Now, there are several ways of scientific and technological achievements transformation including IP business incubation companies, business incubation companies and entrusted professional agency CEO companies. Among these, Zhongguancun Zhiyou Scientist Fund builds a service platform for early scientific and technological investment in hard science and technology, lays out seed Angel hard science and technological achievements, and incubates a number of specialized and new small enterprises and invests in a number of high-quality projects, which has achieved a ideal result.

Biography:

Professor Tianmiao Wang has been a professor at Beihang University in the PRC since 1995. He was the expert panel leader of the national "863 Programme" on robotics technology and the honorary department head at the Graduate School of Robotics of Beihang University.

Prof. Wang is a "Cheung Kong" Scholar appointed by Ministry of Education and the National Science Fund for Distinguished Young Scholar. Prof. Wang is also associate editors of several journals.

He has achieved outstanding results in the research development of medical robots, bionic mechanical fish and embedded intelligent control.

Plenary Talk 2: Friday, July 29, 2022 09:00-09:50 Session Chair: Haibin Yu, Shenyang Institute of Automation, CAS

Cybertwin: An Origin of Cloud Native Network Architecture

Quan Yu

Professor State Key Laboratory of Information Security, China

Abstract:

Internet of Everything (IoE) has been considered as the future of the Internet and could achieve intelligent connections of humans, processes, data and things. A revolutionary feature of the future network architecture for IoE is to support ubiquitous data collection, aggregation, fusion, processing, distribution and service. The disruptive change raises the issues and challenges of scalability, mobility, security and availability for the future network architecture design. In this talk, we draw on the interdisciplinary thinking involved with biology and economics, and present our systematic and original designs of cloud native network, fully-decoupled radio access network (FD-RAN), and endogenous secure elastic network, respectively. In terms of cloud native network, a cybertwin based original architecture is designed to accommodate the evolution from end-to-end connection to cloudto-end connection in the future network. In the aspect of wireless access network, through the deep investigations of signal transmission mechanism of brain neurons, FD-RAN is introduced by referring to biological thinking and enlightenment of "full decoupling" and "flexible collaboration". In the aspect of endogenous secure elastic network, the inspiration of antibody generation mechanism of biological immune system to network is analyzed, and a network security defense architecture based on biologic-like immunity is proposed. Finally, the basic characteristics of cloud native network architecture are summarized, shedding light on the direction for future network architecture design.

Biography:

Quan Yu received the B.S. degree in radio physics from Nanjing University in 1986, the M.S. degree in radio wave propagation from Xidian University in 1988, and the Ph.D. degree in fiber optics from the University of Limoges(France) in 1992. He joined the faculty of the Institute of China Electronic System Engineering Corporation as a senior engineer in 1992, and is currently a Research Fellow of Peng Cheng Lab. His main areas of research interest are the architecture of wireless networks, optimization of protocols, and cognitive radios. Dr. Yu is an Academician of Chinese Academy of Engineering (CAE) and the funding Editor-in-Chief of Journal of Communications and Information Networks (JCIN).

Plenary Talk 3: Saturday, July 30, 2022 09:00-09:50 Session Chair: Lianqing Liu, Shenyang Institute of Automation, CAS

pHRI and its Industrial Applications

Kazuhiro Kosuge

Chair Professor The University of Hong Kong, China

Abstract:

In this presentation, I would like to revisit the pHRI (Physical Human-Robot Interaction) from Cyber-physical Systems point of view. We have developed several pHRI systems including PBDR (Partner Ballroom Dance Robot) and its applications for industries. A Co-worker Robot "PaDY" (intime Parts/tools Delivery to You robot) was developed as an application of pHRI for an automobile assembly process usually carried out only by a human worker. PaDY is a simple robot with two degrees of freedom, designed to be easily introduced into a real assembly process. When we try to apply this concept to different types of tasks, we encounter several issues. In this presentation, we will introduce an adaptive motion planning scheme that has been developed for easy implementation of the co-worker robot "PaDY." This provides an example of an architecture for applications of pHRI.

Biography:

Dr. Kazuhiro Kosuge (Life Fellow, IEEE) is Chair Professor of Robotic Systems in the Department of Electrical and Electronic Engineering, the University of Hong Kong. He received the B.S., M.S., and Ph.D. in control engineering from the Tokyo Institute of Technology, in 1978, 1980, and 1988 respectively. After having served as a R&D Staff of the Production Engineering Department, Nippon Denso Company, Ltd., a Research Associate at Tokyo Institute of Technology and an Associate Professor at Nagoya University, he joined Tohoku University as Professor in 1995 and served as Distinguished Professor from 2018 to March 2021. He received Medal of Honor, Medal with Purple Ribbon, from the Government of Japan in 2018, in the name of the Japanese Emperor, a national honour in recognition of his prominent contributions to academic and industrial advancements. He also received IEEE RAS George Saridis Leadership Award in Robotics and Automation in 2021 for his exceptional vision of innovative research and outstanding leadership in the robotics and automation community through technical activity management. He is an IEEE Fellow, JSME Fellow, SICE Fellow, RSJ Fellow, JSAE Fellow and a member of the Engineering Academy of Japan. He was the President of the IEEE Robotics and Automation Society, from 2010 to 2011, the IEEE Division X Director, from 2015 to 2016 and the IEEE Vice President for Technical Activities for 2020.

Keynote Talks

Keynote Talk 1: Thursday, July 28, 2022 09:20-10:00 Session Chair: Lianqing Liu, Shenyang Institute of Automation, CAS

Aerial-aquatic robots capable of crossing the airwater boundary and hitchhiking on surfaces

Li Wen

Professor Beihang University, China

Many real-world applications for robots such as long-term aerial and underwater observation, cross-medium operations, and marine life surveys require robots with the ability to move between the air-water boundary. Here, we describe an aerial-aquatic hitchhiking robot that is self-contained for flying, swimming, and attaching to surfaces in both air and water and that can seamlessly move between the two. We describe this robot's redundant, hydrostatically enhanced hitchhiking device, inspired by the morphology of a remora (Echeneis naucrates) disc, which works in both air and water. As with the biological remora disc, this device has separate lamellar compartments for redundant sealing, which enables the robot to achieve adhesion and hitchhike with only partial disc attachment. The self-contained, rotor-based aerial-aquatic robot, which has passively morphing propellers that unfold in the air and fold underwater, can cross the air-water boundary in 0.35 second. The robot can perform rapid attachment and detachment on challenging surfaces both in air and under water, including curved, rough, incomplete, and biofouling surfaces, and achieve long-duration adhesion with minimal oscillation. We also show that the robot can attach to and hitchhike on moving surfaces. In field tests, we show that the robot can record video in both media and move objects across the air/water boundary in a mountain stream and the ocean. We envision that this study can pave the way for future robots with autonomous biological detection, monitoring, and tracking capabilities in a wide variety of aerial-aquatic environments.

Biography:

Li Wen is a full Professor at Mechanical Engineering and Automation, Beihang University. His current research interests include bio-robotics, soft robotics, and comparative biomechanics. He published over 100 journal/conference papers including Science Robotics, Science Advances, IJRR, IEEE TRO etc. His representative work was featured by Nature, Science, MIT Technology review, BBC, and other scientific media presses. He was the recipient of the Chinese National Science Fund for Excellent Young Scholars in 2018, and Steven Vogel Young Investigator Award in 2020. He leads many projects including the Chinese National Science Foundation, Key project etc. Li Wen served as an associate editor of Soft Robotics, executive editorial board of Bioinspiration Biomimetics, and associate editor of IEEE Robotics and Automation Letters, etc.

Keynote Talk 2: Friday, July 29, 2022 09:50-10:00 Session Chair: Chengzhi Su, Changchun Univ. of Science and Technology

RFID for Mobile Robot: Navigation, Location and Control

Bo Tao

Professor School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China

Abstract:

For the logistics and warehousing, the identity attributes and location attributes of items are two basic key information, which is of great significance for the transparent management of items. As an important component of the internet of Things, RFID realizes unique ID identification through noncontact electromagnetic communication. Compared with visual sensors, RFID has outstanding advantages, such as low cost and non-light interference, which provides a well solution for the problem of the identity attribute about "what the item is". The RFID-based localization technology aims at solving the location attribute about "where the item is", and would make RFID combine "ID sensor" and "location sensor". This talk will introduce the principle and method of position sensing technology based on RFID, focusing on the target positioning method based on RFID phase information, robot autonomous positioning technology based on RFID information fusion, mobile robot navigation technology based on RFID phase gradient. Combined with specific examples, the application of location sensing technology based on RFID in intelligent manufacturing is also introduced.

Biography:

Bo Tao is a Changjiang Scholar Chair Professor at the School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST). He received the B.S. and Ph.D. degrees in mechanical engineering from HUST in 1999 and 2007 respectively. After being a post-doctor from June 2007 to June 2009, he has been an Associate Professor in 2009 and a Professor in 2013 in HUST. From June 2013 to June 2014, he was a visiting scholar at the the Mechanical Engineering Department of UC Berkeley, USA. He is currently the Secretary General of the robot branch of Chinese Mechanical Engineering Society, and the Secretary General of the tri-co robot branch of Chinese Association of Automation. He has published 1 monograph, more than 80 papers in international journals and conference. He has won the second prize of national scientific and technological progress award, the second prize of National Technological Invention Award and the first prize of national teaching achievement award respectively, and has been authorized more than 30 national invention patents of China. His research interests mainly include intelligent manufacturing and robotics technologies RFID technology and application.

Challenges on Hand Exoskeletons for Rehabilitation and Assistance

Long Cheng

Professor Institute of Automation, CAS, China

Abstract:

Hand is one most important organ of human beings, which plays a critical role in daily lives. Meanwhile, the hands have a strong connection with the human's nervous system. Therefore, the hand exoskeleton cannot only help the patients or the elderly to regain their hand functions in daily activities, but also serves as an important media of shaping the neural plasticity, which is valuable theoretically and practically. This talk discusses the technical challenges and progress on the mechanical design of the hand exoskeleton, the wearable sensors for measuring human's movement and interaction, and some advanced interaction control algorithms. Finally, this talk shares some promising results on building the closed-loop brain-computer interface by the hand exoskeleton in the literature.

Biography:

Long Cheng received the B.S. (Hons.) degree in control engineering from Nankai University, Tianjin, China, in 2004, and the Ph.D. (Hons.) degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2009. He is currently a Full Professor with the Institute of Automation, Chinese Academy of Sciences. He is also an adjunct Professor with University of Chinese Academy of Sciences. He has published over 100 technical papers in peer-refereed journals and prestigious conference proceedings. He was a recipient of the IEEE Transactions on Neural Networks Outstanding Paper Award from IEEE Computational Intelligence Society, the Aharon Katzir Young Investigator Award from International Neural Networks Society and the Young Researcher Award from Asian Pacific Neural Networks Society. He is serving the Chair of IEEE Computational Intelligence Society (2022). He is an Associate Editor of IEEE Transactions on Cybernetics, IEEE Transactions on Automation Science and Engineering, Science China Technological Sciences, and Acta Automatica Sinica. His current research interests include the rehabilitation robot, intelligent control and neural networks.

Program
Conference
2022
CYBER

July 27 (Wednesday)	Registration	Welcome Dinner (for all registered attendees)
	14:00-18:00	18:00-20:00

			July 28 (Thursday)	
			Tianchi 1, 1/F	
08:20-08:30			Opening Ceremony	
08:30-09:20		Plena Reflection	Plenary Talk 1: Tianmiao Wang , Beihang University, China Reflections on Opportunities and Challenges Facing Scientific and Technological Achievements Transformation	ersity, China ng Scientific and nation
09:20-10:00		/ Aerial-aquati	Keynote Talk 1: Li Wen, Beihang University, China Aerial-aquatic Robots Capable of Crossing the Air-water Boundary and Hitchhiking on Surfaces	v, <i>China</i> ater Boundary and
10:00-10:30 nn	uc	Coffee Break	ThP (ID: 5, 6, 9, 14, 1 41, 42, 45, 46, 4	ThPo1 - Poster Session 1 (ID: 5, 6, 9, 14, 17, 22, 23, 25, 26, 29, 30, 36, 37, 40 41, 42, 45, 46, 47, 48, 50, 54, 56, 57, 62, 64, 65, 66)
10:30-12:00 Registratio	Registratio		ThA1 - Best Paper Session I (ID: 49, 55, 125 ,142, 166, 179)	
12:00-13:05	1		Lunch (for all registered attendees)	
		Songjiang, 2F	Baishan 1, 2F	Baishan 2, 2F
13:05-14:35	<u> </u>	ThB2 - Perception and Recognition I (ID:16, 19, 31, 33, 38, 68)	ThB3 - Measurement and Prediction I (ID:28, 39, 43, 77, 100, 112)	ThB4 - Robot Planning and Control I (ID:80, 102, 104, 109, 134)
14:35-15:05		Coffee Break	Th (ID:67, 69, 71, 72, 73, 97, 98, 105, 106, 110	ThPo2 - Poster Session 2 (ID:67, 69, 71, 72, 73, 75, 78, 79, 81, 85, 87, 90, 92, 93, 95, 96 97, 98, 105, 106, 110, 113, 114, 115, 118, 129, 132,133, 141)
15:05-16:35		ThC2 - Perception and Recognition II (ID: 82, 99, 183, 253, 260, 284)	ThC3 - Measurement and Prediction II (ID: 152, 160, 165, 248, 249, 268)	ThC4 - Robot Planning and Control II (ID: 170, 176, 198, 208, 238, 296, 359)
18:00			Conference Dinner (for all registered attendees)	

Thursday Sessions

ThPo1: Poster Session 1

Session Chair: Li Wen

Room : Foyer, 1F, 10:00-10:30, Thursday, July 28

ThPo1(1) 09:50-10:20

Autonomous Cognition and Personalized Service Selection Based on Emotion-Space-Time Information for Home Service Robot

Fei Lu, Ying Yuan, Yuhong Liu, Guohui Tian and Hao Wu

School of Control Science and Engineering, Shandong University, P.R.China

- A user emotion based autonomous service cognition method and personalized service selection strategy for robot is presented
- Ontology technology is used to build the 3D ontology model of the home intelligent space
- Emotion-space-time rule base is encoded and BP neural network
 is adopted to construct the inference engine
- The change of user emotion is used as a reward feedback signal to realize dynamically adjust and personalized service selection

ThPo1(3) 09:50-10:20

Mobility Analysis and Simulation of Metamorphic **Detection Robot with Metamorphic Bevel Gear** Bingbing Yuan and Hongguang Wang State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China Hui Yuan Mechanical Engineering and Automation, Northeastern University, China • The robot's gripper uses the adaptive variable mobility mechanism to ensure adaptability The modified formula of the Kutzbach-Grübler formula is derived for analyzing the mobility change of the closed-chain mechanism with the bevel gear train Sile. 3.0 • As shown in the figure, the final simulation verifies the rationality of the mechanism and a)->c)show the robot has the correctness of the proposed theoretical variable mobility formula d)->f) show the robot's

ThPo1(5) 09:50-10:20

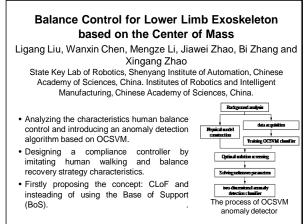
Hybrid Controller and Switching Strategy of Ice-underwater Amphibious Robot based on Dynamic Model Observer

Liu XInyu, Lu Yang, Xin Chuanlong, Tan Dongxu and Li Shuo Guangzhou Institute of Industrial Intelligence and Guangdong Institute of Intelligent Unmanned System and Shenyang Institute of Automation, China

- Ice-underwater amphibious robot with omni wheel and propeller
- Dynamic model of the robot driven by omni wheel and propeller
- Switch the motion state in time and track the desired speed by observe the wheel motion dynamics model and propeller motion dynamics model.

adaptive gripping proces

Robot move path


ThPo1(2) 09:50-10:20

ThPo1(4) 09:50-10:20

ThPo1(6) 09:50-10:20

Session Chair: Li Wen

Room : Foyer, 1F, 10:00-10:30, Thursday, July 28

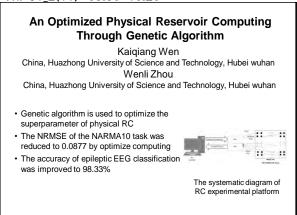
ThPo1_2(7) 09:50-10:20 ThPo1_2(8) 09:50-10:20 A Robust and Flexible Geometry calibration Image-Based Visual Servoing under Field of Method for Phase Measuring Deflectometry **View Constraints for Robot Manipulators** Xinggang Fan and Tianle Ma Guoyu Zuo, Yan Liu, Gao Huang and Daoxiong Gong College of Computer Science and Technology, Zhejiang University of Technology, China Faculty of Information Technology, Beijing University of Technology, China A novel constraint function is proposed to · Combine square-based fiducial markers with a address the visibility constraints. marker-less flat mirror The region boundaries defined in the image are added to the classical proportional Without prior manual image processing controller, which leads the image features · Only require to take a minimum of three from the margin to the center of the image. images · Simulation results verify the efficiency of the

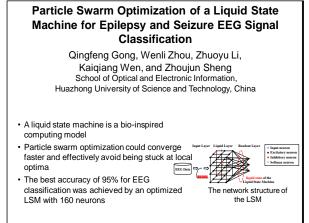
modified controller by controlling a robot manipulator with eve-in-hand configuration

ThPo1 2(9) 09:50-10:20

An Efficient Color and Geometric Feature Fusion Module for 6D Object Pose Estiamtion

Jiangeng Li, Hong Liu, Gao Huang and Guoyu Zuo Faculty of Information Technology, Beijing University of Technology, China

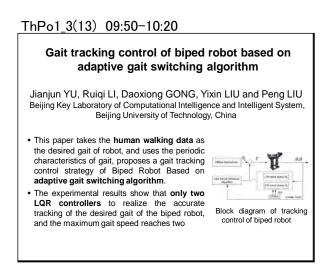

- · An efficient fusion module that can fully leverage two complementary data sources.
- · End-to-end 6D pose estimation method improves the prediction accuracy while obviously reducing the training time.
- Experimental results on LineMOD and YCB-Video dataset show that our method is highefficiency and significantly boosts the performance.


Calibration system

our method

ThPo1 2(11) 09:50-10:20

ThPo1 2(10) 09:50-10:20



ThPo1 2(12) 09:50-10:20

Session Chair: Li Wen

Room : Foyer, 1F, 10:00-10:30, Thursday, July 28

ThPo1_3(15) 09:50-10:20

Design and Development of Foldable Domestic Rescue Capsule

Ziqiang Zhang and Shangkun Yang Faculty of Materials and Manufacturing, Beijing University of Technology, China Jun Li

Faculty of Materials and Manufacturing, Beijing University of Technology, China

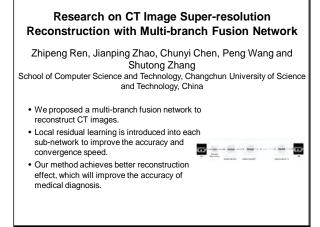
- Domestic rescue capsule can provide emergency refuge space for people when urban disasters occur
- The rescue capsule has a folding structure, including an environmental monitoring system and a communication system
- Parametrically design the rescue capsule to make it resistant to impact and high temperature

ThPo1_3(17) 09:50-10:20

Iterative learning control for conformable fractional order system with time delay

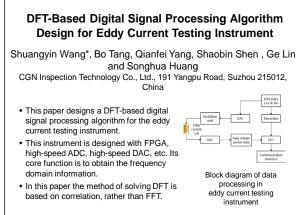
Wang Yugang; Mingwen Yao; Cong Sun

College of Naval architecture and Marine Engineering Shandong Jiaotong University


Fengyu Zhou School of Control Science and Engineering Shandong University/Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of

Technology

- Iterative learning control is applied to deal with a class of repetitive SISO conformable fractional order system
- The λ-norm and Gronwall inequality are applied to derive the convergence
- The influence of time delay is eliminated and the results illustrate the effective of the proposed method.


ThPo1_3(14) 09:50-10:20

ThPo1_3(16) 09:50-10:20

ThPo1_3(18) 09:50-10:20

Session Chair: Li Wen

Room : Foyer, 1F, 10:00-10:30, Thursday, July 28

ThPo1_4(19) 09:50-10:20

Mobile Robot Path Planning Method Based on an Improved A* Algorithm Ning Wang and Ting Wang

State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, China. Zhihui Zhang

- Artificial intelligence college, Shenyang University of Technology, China
- This papper prevent the A* algorithm from searching unnecessary expansion nodes. This method optimizes the diagonal path.
- In this paper, A* algorithm and Bezier curve
- are fused · This method eliminate paths with several large corners.

ThPo1 4(20) 09:50-10:20

Design of prostate puncture system guided by **3D MRI and TRUS images**

Dong Liu, Long Wang, Xuefei Wang and Ming Cong College of Mechanical Engineering, Dalian University of Technology, China Yu Du

College of Mechanical Engineering, Dalian Jiaotong University, China Deyong Yang Urology Surgery, The First Affiliated Hospital of Dalian Medical University, China

- - · A robot system for prostate targeted puncture is designed.
 - An automatic segmentation algorithm for prostate 3D MRI and TRUS images is proposed.
- A novel convolution module integrates residual connection, dense connection and deep separable convolution is proposed.

Structure diagram of prostate puncture system

ThPo1 4(21) 09:50-10:20

A Camera Movement Guidance Method based on Multi-Object Tracking

Puchun Liu, Botao Li, Sheng Bi*, Muye Li and Chenxi Zheng School of Computer Science and Engineering, South China University of Technology, China

- · Deplov a deep learning network model based on JDE for multi-object detection on edge side.
- Design an auto-spilt to split the model, with one part deployed on the edge side and the other on the cloud side
- Design a camera motion model based on clustering algorithms to focus more of the targets.

ThPo1 4(23) 09:50-10:20

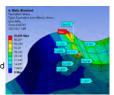
Simulation analysis of temperature field and stress-strain in form grinding of cycloidal gear

Lanying Xu, Sichen Feng, Guo-shan Ye, Qiang Wu Guangdong Polytechnic Normal University, Guangzhou 510635, China.

with the help of finite element analysis software, the transient temperature field and transient stress-strain field of tooth surface are simulated and analyzed respectively

- · At the beginning of grinding, the equivalent stress and strain values of the nodes rise rapidly,
- In the middle of grinding, the equivalent stress and strain values of nodes continue to rise, but the rising speed is slower than that in the early grinding
- · At the end of grinding, the stress and strain values of joints still have a small range of upward

472	· · · · · · ·	
V		
	tion and and an	1
	Grinding time's	
+++++++++++++++++++++++++++++++++++++++		
tres	s change curve	
tres	s change curve	ĭ
tres	s change curve	Ĩ
itres:	s change curve	Ī


(b)Strain change curve

ThPo1 4(22) 09:50-10:20

Simulation Analysis of Contract Stress of **Cycloidal-Pin Gear**

Lanying Xu, Guoshan Ye, Qiang Wu, Sichen Feng Guangdong Polytechnic Normal University, Guangzhou 510635, China.

- · The meshing performance of cycloidal-pin gear transmission is the key factor affecting the transmission accuracy of high-precision
- Through the simulation nephogram, the regularities of distribution of contact stress and strain in the meshing process of cycloidal-pin gear is discovered
- · The position of the maximum stress is on the upper edge of the meshing area of the cycloidal wheel and the pin teeth

Local enlarged drawing of the maximum stress position of the cycloidal wheel

ThPo1 4(24) 09:50-10:20

welding

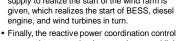
Session Chair: Li Wen

Room : Foyer, 1F, 10:00-10:30, Thursday, July 28

ThPo1_5(25) 09:50-10:20

Design of Humanoid Robotic Hand Based on Link Underactuation

ZHANG Pu, DU Rui-long, et al Zhejianglab, Hangzhou , China


• The robotic hand has 7 degrees of freedom and 15 joints;

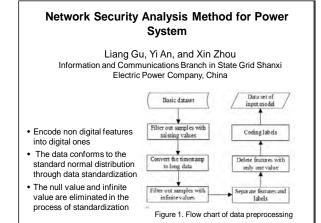
• The actuators are placed into the palm of the hand;

- · The fingers are driven by linkages and are self-locking with worm gears.
- · The robotic hand shows good adaptability to different grasp types.

ThPo1 5(27) 09:50-10:20

Research on Black Start Coordinated Control Technology of Offshore Wind Power, Diesel, and Storage Combined System Chao Yuan, Hongyu Yang, Yanan Liu, Yiming Tang Jiangsu Frontier Electric Power Technology Company, China Kaiyuan Huang the School of Electrical Engineering, Southeast University and with Nanjing Dongbo Smart Energy Research Institute, China This paper proposes an improved BESS startup strategy to achieve zero voltage start reducing the inrush current of the system. · Then the method of using auxiliary power έ, supply to realize the start of the wind farm is

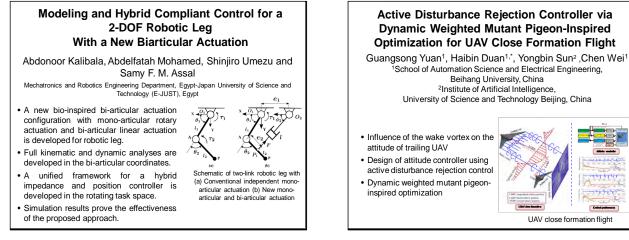
strategy is proposed to improve the control link of the BESS, and the control strategy of wind turbine phase modulation operation is used to improve the voltage quality of the system.


voltage during the black start process of wind farm

ThPo1_5(26) 09:50-10:20

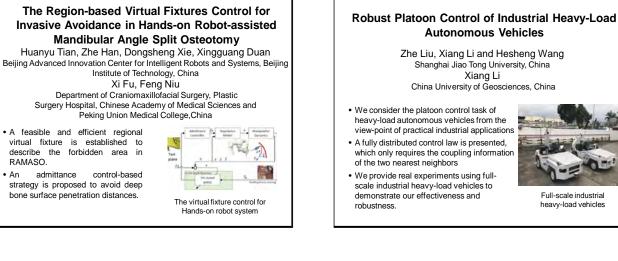
· Finally, the electrical distance evaluation for the black-start of offshore wind power is based on the two goals.

ThPo1 5(28) 09:50-10:20



ThA1: Best Paper Session I

Session Chair: Li Wen

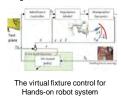

Room : Tianchi 1, 1/F, 10:30-12:00, Thursday, July 28

ThA1(1) 10:20-10:35

ThA1(4) 11:05-11:20

ThA1(2) 10:35-10:50

ThA1(6) 11:35-11:50



Peking Union Medical College, China A feasible and efficient regional virtual fixture is established to describe the forbidden area in RAMASO.

strategy is proposed to avoid deep

bone surface penetration distances.

ThA1(3) 10:50-11:05

ThA1(5) 11:20-11:35

admittance

• An

Development of a Redundant Humanoid Lower Limb With Whole-Foot Tactile Perception

Xi Fu, Feng Niu

control-based

Funing Hou and Shijie Guo Academy for Engineering and Technology, Fudan University, China Jixiao Liu, Dicai Chen, and Kuo Liu School of Mechanical Engineering, Hebei University of Technology, China

- The mechanism and the inverse kinematics algorithm of a humanoid lower limb with eight DoFs.
- A tactile sensor wrapping around the whole foot and a circuit integrating sensing and control.
- A mapping relationship between the control commands and the contact information to realize teachingplayback functions

(a) Structure. (b)-(c) Motion control by foot tactile information.

ThB2: Perception and Recognition I

Session Chair: Hao Sun

Room : Songjiang, 2F, 13:05-14:35, Thursday, July 28

ThB2(1) 13:30-13:45

Unsupervised Domain Adaptive Object Detection Based on Frequency Domain Adjustment and **Pixel-Level Feature Fusion**

Yanlong Xu^{1,2}, Huijie Fan^{2,*}, Hao Pan¹, Lianquan Wu³ and Yandong Tang²

- ¹ Shenyang University of Chemical Technology, China.
- ² Shenyang Institute of Automation, Chinese Academy of Sciences, China. ³ Department of Police skills and Tactics Training, Criminal Investigation Police University of China, China.
- · Applying a trained model to a new unlabeled dataset will result in a dramatic degradation of model performance.
- · We adopt an unsupervised domain adaptive approach to solve the problem of lacking annotated data sets.
- · Fourier transform is introduced to adjust the images to reduce the domain offset.
- · An improved adaptive feature fusion structure is introduced to enhance information fusion.

ThB2(3) 14:00-14:15

Sparse representation guided low-rank restoration for noisy image recognition

Zhenyu Ll^{1,2}, Xi'ai CHEN^{1,2}, Jiaxin LlU³, Chenyu ZHANG^{1,2}, Yong Ll⁴, Zhi HAN^{1,2}

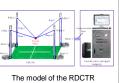
¹State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang ²Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of

Sciences, Shenyang

³State Grid Liaoning Electric Power Research Institute, Shenyang ⁴State Grid Shandong Electric Power Research Institute, Jinan

A sparse representation-based recognition algorithm and a low-rank representation-based denoising algorithm are integrated into one model.

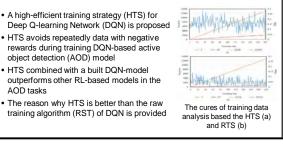
- · Solving the problem of lack of information interaction between denoising and identification.
- We propose an optimization algorithm based on the alternating direction method of multipliers(ADMM).


Our method is more robust and effective under high density noise compared with traditional recognition methods.

ThB2(5) 14:30-14:45

Study of Control Method of a Rope-Driven **Coordinative Towing Robot System**

Xiaoyan LI School of Railway Power, Shaanxi Railway Institute, China


- · Firstly, the structural configuration and
- kinematics of RDCTR were introduced. The generalized dynamical model of the RDCTR was then established.
- · A control strategy with the hybrid force/velocity control and the velocity compensator was proposed for the RDCTR
- The control strategy was simulated and analyzed in the single rope driven unit and the RDCTR system.

• HTS avoids repeatedly data with negative rewards during training DQN-based active

object detection (AOD) model • HTS combined with a built DQN-model outperforms other RL-based models in the AOD tasks

ThB2(2) 13:45-14:00

ThB2(4) 14:15-14:30

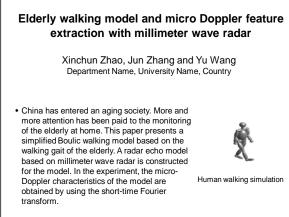
An Automatic Hand Rehabilitation Assessment System: Implementation and Experiments

A High-efficient Training Strategy for Deep Q-learning

Network Used in Robot Active Object Detection

Shaopeng Liu and Guohui Tian

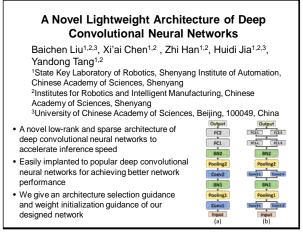
School of Control Science and Engineering, Shandong University, China


Yifan Wang and Cheng Long State Key laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, China

- An automatic hand rehabilitation assessment system based on hand gesture recognition and a self-designed hand strength measurement device
- · The system can realize all hand rehabilitation assessments in Fugl-Meyer Assessment (FMA) at home.

· The proposed system has the same reliability as the traditional FMA in hand function assessment according to 10 volunteer experiments

ThB2(6) 14:45-15:00



ThB3: Measurement and Prediction I

Session Chair: Zhi Han

Room : Baishan 1, 2F, 13:05-14:35, Thursday, July 28

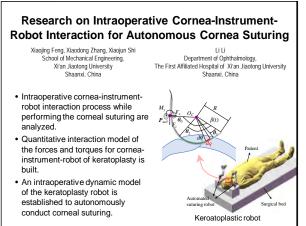
ThB3(1) 13:30-13:45

ThB3(3) 14:00-14:15

Analysis and Simulation of Influence of Attitude Error on Strapdown Seeker Angle Rate Extraction

Zhiman Liu and Yifei Wang Changchun Automobile Industry Institute, Changchun 130013, China

- The relationship between navigation attitude error and extraction accuracy of line of sight angle rate of strapdown seeker is given.
 This paper takes an ammunition model with


The relationship between

sight angle and body sight

angle

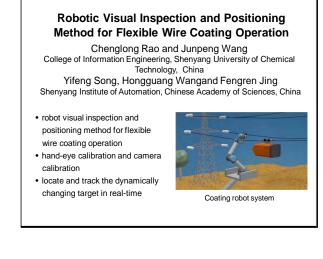
optical strapdown seeker as an example. • The simulation results show that when the navigation attitude error is 5 degrees, the guidance accuracy will not be affected

ThB3(5) 14:30-14:45

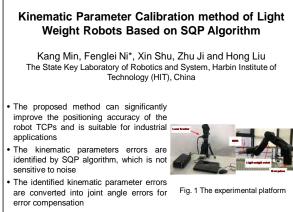
ThB3(2) 13:45-14:00

Prediction of the Contrast between Target and Background based on an Improved Support Vector Machine

> Junbo Liao, Hongxue Yuan, Huiru Zhong and Heng Li China Huayin Ordnance Test Center, China Xin Cai


School of Electrical Engineering, Xinjiang University, China Jian Li and Yuliang Zhao School of Control Engineering, Northeastern University, China

•Apparent temperature difference (ATD) between the target and the background is used as an alternative method to evaluate the infrared radiation contrast.

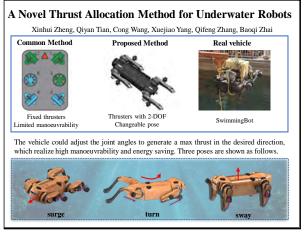

•A support vector machine (SVM) algorithm based on an improved PSO algorithm is proposed to predict the ATD of two different static targets based on long-term testing.

•Dynamic selection strategy based PSO is proposed to search the optimal parameters of SVM for improving the performance of SVM.

ThB3(4) 14:15-14:30

ThB3(6) 14:45-15:00

ThB4: Robot Planning and Control I

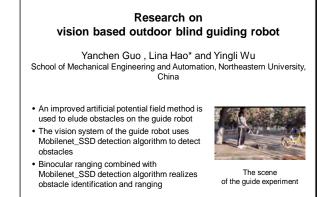

Session Chair: Zigiang Zhang

Room : Baishan 2, 2F, 13:05-14:35, Thursday, July 28

ThB4(1) 13:30-13:45

ThB4(2) 13:45-14:00

ThB4(3) 14:00-14:15


Structure Design and Trajectory Planning Of **Meal-assistance Robot** Chao Wang School of Mechanical and Electrical Engineering, Harbin Engineering University, China · Firstly, the structural of Meal-assistance was design. • The generalized Kinematic model of the robot was then established. · The motion trajectory of the robot was planned by quintic B-spline. · Simulation result indicates that the robot's joint position, velocity and The model of Meal-assistance robot acceleration curves are smooth and continuous without vibration.

ThB4(5) 14:30–14:45

 a path planning method adapt to the kinematic model of the crane

ThB4(4) 14:15-14:30

ThPo2: Poster Session 2

Session Chair: Li Wen

Room : Foyer, 1F, 14:35-15:05, Thursday, July 28

ThPo2(1) 15:00-15:30

Evaluation and Comparison of Gmapping and Karto SLAM Systems

Shengshu Liu, Yixing Lei and Xin Dong Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, United Kingdom

EMG-based Assessment of Shank Muscle

Fatigue During Dynamic Exercise

Bi Zhang, Xingang Zhao

Ligong University.

· Gmapping outperforms Karto in both localization and mapping

ThPo2(3) 15:00-15:30

proposed.

model

- · But the high quantity of particle usage demands more computational load than Karto
- Therefore, Gmapping is suitable for complex environments with demanding accuracy requirements
- and Karto would suffice if the environment is simple and the accuracy requirement is undemanding.

· An algorithm that can classify fatigue levels is

• Building a neuromusculoskeletal Hammerstein

· Analyzing the changes of model parameters in

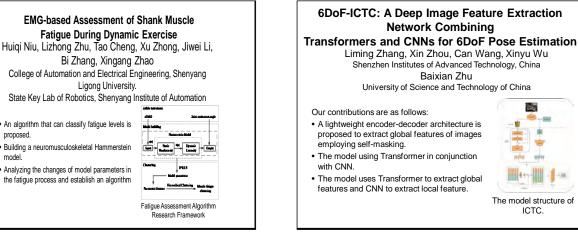
the fatigue process and establish an algorithm

Karto

ThPo2(2) 15:00-15:30

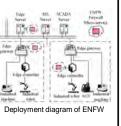
Design of a **Multi-connection Pneumatic Artificial Muscle**

Shixin Zhang and Daoxiong Gong Faculty of Information Technology, Beijing University of Technology, China Jianjun Yu


- Faculty of Information Technology, Beijing University of Technology, China
- MPAM is formed by the combination of six
- pneumatic muscle fibers.
- MPAM is only 35g, and the thickest part is 3.5cm.
- MPAM's maximum contraction force is about 108N, the maximum contraction ratio is 28%.

 MPAM can recruit different amounts of muscle fibers depending on the situation.

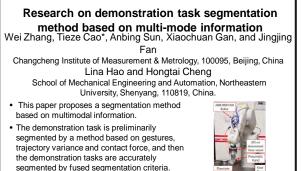
Physical design of MPAM


ThPo2(4) 15:00-15:30

ThPo2(5) 15:00-15:30

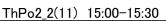
- called ENFW Working as a firewall micro-service linked by the industrial firewall and the edge
- management centre. Integrating the heterogeneous industrial protocol parsing function and the general firewall function
- ENFW outperforms traditional firewall in terms of performance.

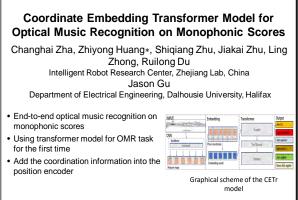
ThPo2(6) 15:00-15:30

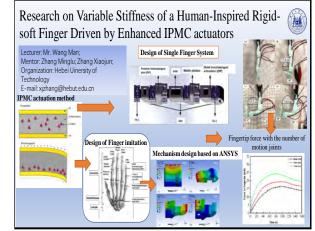

Session Chair: Li Wen

Room : Foyer, 1F, 14:35-15:05, Thursday, July 28

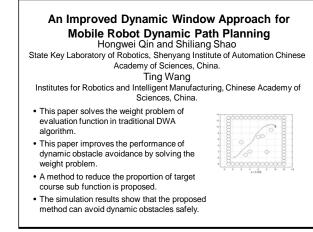
ThPo2_2(7) 15:00-15:30




ThPo2_2(9) 15:00-15:30

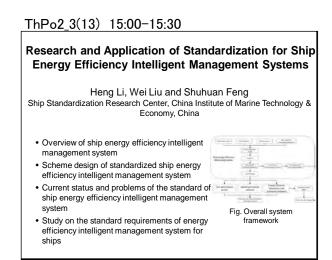

Experimental platform

• Finally, the effectiveness of the proposed segmentation method is verified by reproducing the process of assembling planetary gear reducers.



ThPo2_2(8) 15:00-15:30

ThPo2_2(10) 15:00-15:30


ThPo2_2(12) 15:00-15:30

ThPo2: Poster Session 2 (cont.)

Session Chair: Li Wen

Room : Foyer, 1F, 14:35-15:05, Thursday, July 28

ThPo2_3(15) 15:00-15:30

Prediction of spraying process parameters based on BP neural network

Abstract— In order to solve the problem that there are many process parameters in spraying process, which have complex influence on coating quality and have uncertain process parameters, a prediction method of spraying process parameters was proposed based on BP neural network algorithm. In the process of spraying, there are many factors that affect the quality of coating, and their interaction is complex, so it is difficult to find an accurate mathematical model in accordance with its rules. In this paper, BP neural network is used to establish the nonlinear mapping relationship between spraying process parameters and coating quality indexes, which is used as the prediction model of spraying process parameters. Taking ambient temperature, humidity, paint viscosity and film thickness as the input of neural network, and flow proportional valve pressure, atomization pressure and fan control pressure as the output, BP neural network model was established, and the prediction ability of the model was improved by optimizing the structure of the model. After relative error of atomization pressure is 0.43%. The average relative error of atomization pressure is 0.43%. The average relative error of action control pressure is 0.61%. The established BP neural network model can meet the prediction requirements, and can clearly describe the relationship between environmental parameters, paint parameters, pressure parameters and coating quality, so as to better control the spraying process.

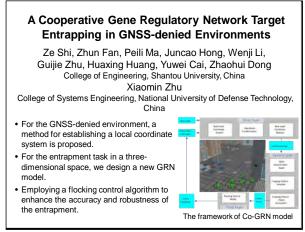
ThPo2_3(17) 15:00-15:30

Research on Point Cloud Noise Reduction Method based on Multi-Frame Fusion

Abstract— Aiming at the noise existing in the component point cloud model during the robot spraying process, a noise reduction method based on multi-frame point cloud fusion is proposed. First, establish a topology structure for the point cloud data; secondly, find the closest point based on the topology structure; finally, take the closest point in the point cloud as the corresponding point, and calculate the average value to complete the fusion of the point cloud. . Taking the point cloud of plate class parts and right-angle class parts as the experimental objects, the experimental results show that after nine times point cloud fusions, the accuracy of the for plate class parts is improved by about 1.8 times ; for right-angle class parts, processing The large curvature part of the back point cloud does not appear over-smoothing. The algorithm achieves a good noise reduction effect and also preserves the high-frequency information of the point cloud.

ThPo2_3(14) 15:00-15:30

Countermeasures for cramps in passive training of hand function rehabilitation robot


Kexin Zuo, Ben Wang, and Yangwei Wang, Member, IEEE Northeast Forestry University, China

 Aiming at the problem of sudden cramps during finger rehabilitation using SMA wire actuation, a spasticity relief strategy based on existing medical methods was proposed. By improving the neural network PID control method, the hand function rehabilitation robot can pull the fingers with constant force. A series of experiments were designed to verify the feasibility. The experimental results show that the method can control the SMA wire to pull the patient's fingers with constant force, and it is effective in relieving cramps.

Hand Function Rehabilitation Robot

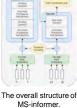
ThPo2_3(16) 15:00-15:30

ThPo2_3(18) 15:00-15:30

Research on Point Cloud Fine Registration Method Combined with Colored Grid Projection

Abstract— Aiming at the problem of low accuracy and large position deviation of component point cloud registration in the process of robot spraying, a point cloud fine registration method combined with colored grid projection is proposed. First, the topology of the point cloud is established; secondly, the overlapping part of the point cloud is obtained by finding the nearest point based on the established topology; third, color cluster the point cloud is to find the key points; Finally, the corresponding point is found by the similarity between the position of the key point and the RGB value, and the point cloud fine registration is completed. Take the point cloud of the flat class parts and the freeform surfaces class parts as an example, the average distance between the corresponding points after the completion of the fine registration is about 3mm, and the accuracy of the point cloud meets the reguirements of the robot intelligent spraying for the component point cloud model. The effectiveness and applicability of the proposed algorithm are verified

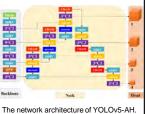
ThPo2: Poster Session 2 (cont.)


Session Chair: Li Wen

Room : Foyer, 1F, 14:35-15:05, Thursday, July 28

<u>ThPo2_4(19)</u> 15:00–15:30 Inverse kinematic solution me manipulator based on may	
Zhenyu Liu and Qin Z The School of Electrical Engineering, Univ Hui Chai and Jiamin The School of Control Science and Engineering,	rersity of Jinan, China Guo
 Solve the inverse kinematics problem of 6- DOF manipulator by using mayfly algorithm(MA). 	Comment for flows function The section of the sect
• Design a separate fitness function according to the manipulator arm-wrist structure.	The Minutang Depart the test Segme to the test s
 Introduce an adaptive weight factor into MA to improve the algorithm performance. 	Data Line remo

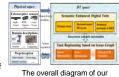
ThPo2 4(21) 15:00-15:30


A Novel Multi-Stream Informer Used for Lower **Extremity Joint Angle Estimation** Xin Zhou, Liming Zhang, Jiaqing Liu, Jiancong Ye, Can Wang and Xinyu Wu Shenzhen Institutes of Advanced Technology, China Our contributions are as follows: · Sparse attention mechanism is introduced into the field of joint angle prediction. Multi-Stream informer is proposed. · Achieve better results than state-of-the-art models.

ThPo2_4(23) 15:00-15:30

Automatic Pavement Crack Detection **Based on YOLOv5-AH** Zhaohui Dong, Guijie Zhu, Zhun Fan, Jiacheng Liu, Huanlin Li, Yuwei Cai, Huaxing Huang, Ze Shi, Weibo Ning and Liu Wang College of Engineering, Shantou University 1) Use a mobile robot to collect crack images on pavement and establish an image dataset 2) Introduce the attention mechanism and one more prediction head to improve the robustness and generalization of our model. 3) YOL Ov5-AH achieve excellent performance on pavement crack

dataset in both detection accuracy and detection speed.



ThPo2_4(20) 15:00-15:30

Digital Twin-Driven Task Replanning Method for **Robot-Environment Physical Interaction**

Xin Li, Bin He, Zhipeng Wang, Yanmin Zhou and Gang Li College of Electronics and Information Engineering, Tongji University, China

 This paper proposed a REI task replanning method using the scene graph and builds a real experimental scene to complete verification. The main contributions of this work are as follows:

proposed DT

- 1) a practical task replanning method of REI based on GNs-LSTM, which is capable of quickly obtain the atomic action sequence of the task, is proposed;
- · 2) a lite REI task planning dataset is established.

ThPo2 4(22) 15:00-15:30

Multi-robot systems have great advantages and wide applications in the fields of ground reconnaissance, environmental monitoring, and key area patrols. However, in the field of multi-robot collaboration, it is difficult to take into account the patrol efficiency and path privacy simultaneously, especially when any intelligent intruders happen. To conquer the above difficulty, path randomness is proposed as a criterion to establish a multi-robot cooperative path planning model based on idle time dispersion, so as the path information privacy and security in the patrol process can be protected. In order to get the solution of the model, the index of idle time dispersion is introduced to get a tailored ant colony algorithm. Finally, patrol paths of multi mobile robots with high security are obtained. Several simulations in the simple road network and complex road network are conducted to verify the feasibility and effectiveness of the proposed method.

ThPo2_4(24) 15:00-15:30

33

ThPo2: Poster Session 2 (cont.)

Session Chair: Li Wen

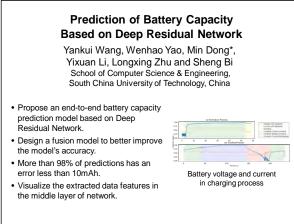
Room : Foyer, 1F, 14:35-15:05, Thursday, July 28

ThPo2_5(25) 15:00-15:30

Design and Implementation of a Control System for Wrist Offset Wheel Hub Polishing Robot

Kui Zhu, Lijun Zhao, Zhiheng Liu and Yi Xia State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, China

- Oriented to the grinding and polishing robot with offset wrist
- Cooperative design method of the software and hardware control system
- Based on EtherCAT
- Human-computer interaction for grinding and polishing system


ThPo2_5(27) 15:00-15:30

A Method for Identifying Spatial Distribution Parameter Fields of Composite Materials Based on Modal Functions

Li Fan, Xiongzi Li and Zhongxue Gan Engineering Research Center for Intelligent Robotics Ji Hua Laboratory Foshan, Guangdong, China

- The mechanical parameters of composite materials often exhibit nonuniform characteristics with spatial distribution.
- Aiming at non-uniformity, this paper proposes a method to identify the spatial distribution parameters of composite materials based on modal superposition and orthogonal polynomial expansion.
- The results show that the algorithm in this paper can accurately identify the parameters of composite materials with non-uniform distribution in space, and has a relatively high identification accuracy in the presence of experimental noise. This method can provide more accurate material parameters for modeling heterogeneous composite materials.

ThPo2_5(29) 15:00-15:30

ThPo2_5(26) 15:00-15:30

A FOPID-IGPC Control Method for Bulb Tubular Turbine Generator Unit

Aimin An, Yongan Wen and Rongxin WangFirstName LastName College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, China

- Bulb Tubular Turbine Generator Unit (BTTGU) as an ideal generation equipment for developing power resources of low head water, it has the advantages of high efficiency, high overflow, small investment, short construction period. Therefore, it is of great practical significance to master its operating characteristics and improve its control performance.
- A block modeling approach is used to model each of the four subsystems of the regulation system. When the unit wears out or the system working condition changes, the traditional PID controller parameters cannot guarantee good control performance of the system.
- Fractional-Order PID Implicit Generalized Predictive Control (FOPID-IGPC) controller is designed to improve the control performance of the system. The effectiveness of the proposed FOPID-IGPC control strategy was verified by start-up scenario, frequency tracking scenario and load dumping test scenario.

ThPo2_5(28) 15:00-15:30

An Attention Based Chinese Sign Language Recognition Method Using sEMG Signal

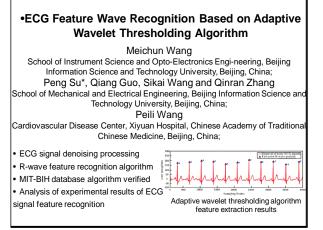
Zhen Zeng and Fei Wang Faculty of Robot Science and Engineering, Northeastern University, China.

- Proposed an Attention Based Chinese Sign Language Recognition Method which is able to recognize Chinese sign language from sEMG multi-modal data.
- Introducing SE-Block and LSTM for parsing the temporal features of sign languages
- Our method achieves better accuracy performance and real-time performance.

Model structure of our method

ThC2: Perception and Recognition II

Session Chair: Ningbo Yu


Room : Songjiang, 2F, 15:05-16:35, Thursday, July 28

ThC2(1) 15:30-15:45

- YOLOv5m
 Design a prediction box correction algorithm to correct the detection results
- SIP-YOLOv5 improves AP0.5 by 5.4% and AP05:0.95 by 1.7% compared to YOLOv5m

ThC2(3) 16:00-16:15

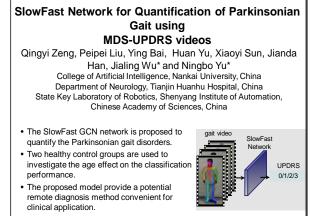
ThC2(5) 16:30-16:45

A Novel Hand Gesture Recognition Method Using sEMG-Based PSODE-BPNN

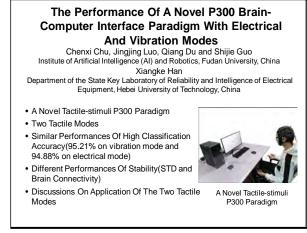
Ling-Long Li, Guang-Zhong Cao*, Senior Member, IEEE, Yue-Peng Zhang, and Jiang-Cheng Chen

Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and Control Engineering, Shenzhen University, China

- Propose a novel sEMG-based PSODE-BPNN method to optimize BPNN for hand gesture recognition.
- The parameters weights and biases of BPNN are updated and optimized by PSO and DE combining with gradient descent method.
- Evaluate the PSODE-BPNN on sEMG-based hand gesture dataset Ninapro DB4. The method improves the inadequacy of slow convergence rate and local minimum of BPNN, achieves higher gesture recognition accuracy than BPNN, PSO-BPNN, and other previous competing methods.


fillion and milenigent Robols,
Shenzhen University, China
,
Harden Fille of
At the humanital similar of 1976
مستكنيون بالألاف متراكلات مستحدهم اعتباد انلا
مجمير استخالهاه مسانا استخربات مكافوه والاستكالا
مخمصها خادران
-
lipite origin and the primiting PSD spation and the
نا بالتائه اعتلمه اسمنة استلحج
استامی ما امر مناسب کا رونستامچسط امر دارزاد منتیزا انتخاب او استان است
Mail in the local distance in the local dist
Caljust the local Minute states Name 1910 and CHI, any schedu
مستا المكمكما المطلبة علاقات (110 ما المكمكما المدد علا بمطبوقا
1937 مسل استقلالها اسارها: ظلم 10 ما استثنائها استحصال مطروع (18
the second s
Call Report
نقائل شماطيسان اعتقارتها الكن استارد ما اعربا بالذكر استعادت اعتقاده اعتلام اعل داختين
التناك المستنا المحتورات المتارد الما ما الجان

The structure of


SIP-YOLOv5

The process of the proposed PSODE-BPNN

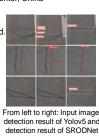
ThC2(2) 15:45-16:00

ThC2(4) 16:15-16:30

ThC2(6) 16:45-17:00

ThC3: Measurement and Prediction II

Session Chair: Zhi Han


Room : Baishan 1, 2F, 15:05-16:35, Thursday, July 28

ThC3(1) 15:30-15:45

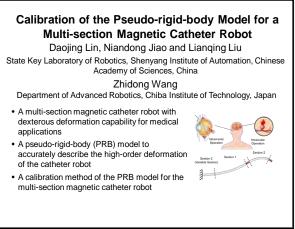
SRODNet:Pavement Crack Detection Based on Deep Convolutional Neural Network and Shadow Removal

Yide Zhang¹, Guoliang Liu⁴ and Yichao Cao⁵ School of Control Science and Engineering, Shandong University, China Zhihong Li² and Zilong Sun³ Yantai Highway Development Center, China

- Based on practical needs, a large-scale road disease dataset and shadow dataset are created
 A road disease detection algorithm named
- A road disease detection algorithm named SRODNet (Shadow Removal and Object Detection network) is proposed.
- SRODNet performs 9.7% precision and 3.5% mAP more than Yolov5.

ThC3(3) 16:00-16:15

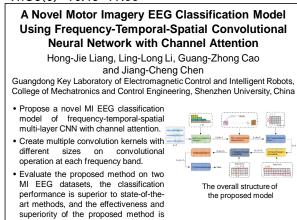
A Robot Coordinate Measurement System Based on Pull Wire Sensor and Its Parameter Identification Method


Shuang Gao, Kaiwei Ma, Yang Gao, Xin Shen and Fengyu Xu the College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, China Mingxing Yang

the Anhui Province Key Laboratory of Special Heavy Load Robot, China

- Build a robot coordinate detection device
 Secondary error compensation using neural network
- The neural network structure is designed to optimize the compensation

ThC3(5) 16:30-16:45


ThC3(2) 15:45-16:00

ThC3(4) 16:15-16:30

ThC3(6) 16:45-17:00

validated

ThC4: Robot Planning and Control II

Session Chair: Weidong Guo

Room : Baishan 2, 2F, 15:05-16:35, Thursday, July 28

ThC4(1) 15:30–15:45 **3D Eye-to-Hand Coordination for**
Uninstructed Robot Grasp Planning Peidong Liang, Chengxi Huang and Chentao Zhang
Fujian (Quanzhou)-HIT Research Institute of Engineering and Technology,
China Zhendong Fan and Lijun Zhao State Key Laboratory of Robotics and System, Harbin Institute of Technology,
China Ruizhe Zhang Department of Computer Science and Technology, Tsinghua University, China • 3D eye-to-hand calibration
• 3D pointcloud data preprocessing
• Point cloud segmentation
• Uninstructed grasp planning

ThC4(3) 16:00-16:15

Automatic Generation Of Stability Matrix For Assembly Sequence Planning

Trong Thien Vu, Zengxi Pan and Stephen Van Duin Faculty of Engineering and Information Sciences (EIS), University of Wollongong (UOW), Australia

- Assembly sequence planning needs to ensure feasible sequences, whereby each operation yields stable subassemblies.
- Stability matrix (SM) represents stability between every pair of parts in a subassembly.
- Our module automatically generates SM using: ophysics-based approach: can handle friction
- STL file format: universal and light
 Validated using test cases with and without friction.

Woodblock subassembly on inclined surface

.

ThC4(5) 16:30-16:45

Ordered Boundary Extraction Algorithm of 3D Point Cloud for Guiding Robot Spraying

The target digital model is provided for the robot controller through the three-dimensional reconstruction technology when the robot is guided by the visual system for intelligent spraying. In order to acquiring the reconstruction model of the target, the point cloud data obtained by the 3D vision sensor is processed by the 3D reconstruction technology. As an important geometric feature of the reconstruction model, the accurate extraction of the ordered boundary will be the core of the3D reconstruction technology. It is found that the current research on 3D reconstruction technology is generally to construct triangular meshes for discrete point clouds. However, in practice, the point clouds obtained from binocular stereor vision have matrix structure and can be directly converted to triangular meshes. However, the results contain large randomness and error when using grid characteristics to sort complex grid boundaries. To solve the above problems, we propose an integrated boundary extraction algorithm based on binocular stereo vision point cloud. The point cloud with matrix structure collected by binocular stereo camera is converted into point clouds with triangular mesh. It is stipulated that the searching of boundary must be found by the path containing the triangle in the boundary vorting so that the boundary search has a unique solution and provide a method to obtain an accurate and orderly boundary.

ThC4(2) 15:45-16:00

Path Planning Research for Outdoor Mobile Robot

Yujing Dong, Shuang Liu, Changzheng Zhang and Qigao Zhou East China University of Science and Technology, China

- Present an improved A* algorithm based on road boundary constrainted
- It can be applied for road scenes such as
- campuses, communities, and industrial parks Reduce the influence of road boundaries when the mobile robot is moving outdoors

Mobile robot moving outdoor

ThC4(4) 16:15-16:30

ZMP Preview Control of Lower Limb Exoskeleton Robot Based on 3D Linear Inverted Pendulum Zhiwei Zhu

Abstract—In order to obtain the stable gait of lower limb exoskeleton robot, a gait generation method with zero force distance point (ZMP) compensation of preview control is proposed. According to the 3D linear inverted pendulum model and preview control theory, the inverted pendulum model is compensated by using the error between the actual ZMP and the target ZMP, and the centroid trajectory of the robot is planned, so that the three-dimensional linear inverted pendulum comparated ZMP preview control model has better ZMP tracking effect. Through programming and Simulation in Python, the effectiveness of the improved preview control and ZMP compensation optimization method to improve the inverted pendulum robot is verified, and the stability margin of the lower limb exoskeleton robot in the walking process is improved.

ThC4(6) 16:45-17:00

Manipulation Planning for an Mobile Manipulator with Positioning Error

Yuhao Meng, Tao Wang, Yujing Chen and Yunjiang Lou School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen, Shenzhen, China.

- Design the overall scheme for the mobile manipulator and realize online planning.
 Proposed a manipulator operating
- capability map based on mobile platform positioning uncertainty.
- Proposed an accurate and safe manipulator pose planning algorithm based on the manipulator capability map.



ThC4: Robot Planning and Control II (cont.)

Session Chair: Weidong Guo

Room : Baishan 2, 2F, 15:05-16:35, Thursday, July 28

ThC4_2(7) 17:00-17:15

waves, fields, and forces

light for in-situ TEM

Friday Sessions

FrPo3: Poster Session 3

Session Chair: Li Wen

Room : Foyer, 1F, 10:30-11:00, Friday, July 29

FrPo3(1) 10:20-10:50

- IPMC actuator is designed • The manipulator can grasp and pinch objects
- with the same weight and different shapes
- The bionic flexible manipulator shows good flexibility and adaptability

Pinch demonstration of objects with different shapes

FrPo3(3) 10:20-10:50

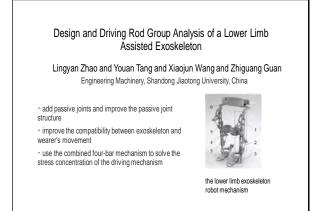
Deep Residual Network for Image Super-Resolution Reconstruction

In this paper, an image super-resolution reconstruction method based on residual network is proposed. The sub-image is used as the input of the deep residual network, and then the residual network is improved by combining both local and global residual learning, which reduces the phenomenon of gradient disoperance and improves the efficiency of information transfer. The multi-scale convolution kernel is used to extract rich feature texture information for obtaining the reconstructed image. The experimental results indicate that the reconstruction effect of this method achieves better subjective visual experience and objective evaluation indicators than the contrasting algorithms.

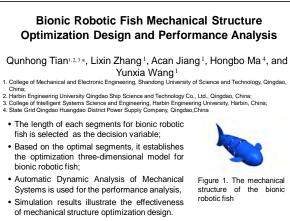
FrPo3(5) 10:20-10:50

Experimental Design of Self-Tracking Camera Gimbal Robot Based on OpenCV

Di Zhao12*, Yuhong Du3, Zhenyu Ding4, Bo Yuan5 and Yuxiang Wang6

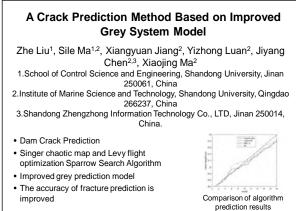

(1.Engineering Teaching Practice And Training Center, National Experimental Teaching Demonstration Center of Engineering Training, Tiangong University, Tianjin 300387. 2. State Key Laboratory of Turbulence and Complex Systems, Laboratory of Intelligent Bionic Design, College of Engineering, Peking University, Beijing 100871. 3. Teaching Quality Monitoring and Evaluation Center, Tianagong University, Tianjin 300387. 4. Tiangong University, School of Electronic and Information Engineering, Tianjin 300387. 5. Tiangong University, School of Mechanical Engineering, Tianjin 300387. 6. Tiangong University, School of Electronic and Information Engineering, Tianjin 300387)

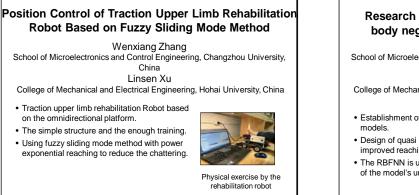
Abstract-The emergence of COVID-19 has reduced the opportunities for offline meetings, making people's work and study more transfer to the internet platform. However, the viewing angle and distance of the camera cannot be considered both. Therefore, machine vision is used to identify and track the presenter, and the camera pan-tilt control function of automatically tracking the presenter is realized. In many tests, the target tracking function works normally and works well. The experimental design involves relatively comprehensive disciplines, with good functional scalability and high practicability. It is an innovative experiment integrating robotics teaching, machine learning practice and embedded systems.


FrPo3(2) 10:20-10:50

Dynamic Parameter Identification of Six-axis Industrial **Robot Based on Improved Genetic Algorithm** Yan Li, Dawei Ni, Chengyu Wei, Zengpeng Lu, Zhenguo Zhang and Keping Liu Department of Control Science and Engineering, Changchun University of Technology, China. To reduce the amount of calculation, the robot is Build a dynamic Optimize excitation model trajectory simplified into two three-axis robots. Model linearization imum parameter estimation Establish a linearized industrial robot dynamic model Experimental verification · Optimize the coefficients of excitation trajectory by the Parameter identification flow chart improved genetic algorithm.

FrPo3(4) 10:20-10:50


FrPo3(6) 10:20-10:50


Session Chair: Li Wen

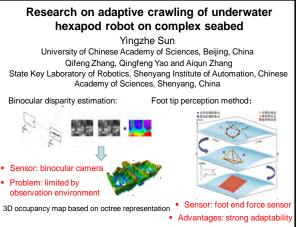
Room : Foyer, 1F, 10:30-11:00, Friday, July 29

FrPo3_2(7) 10:20-10:50

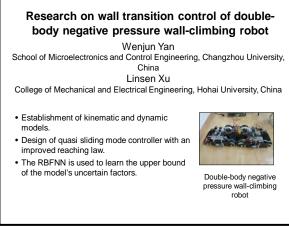
FrPo3_2(9) 10:20-10:50

FrPo3_2(11) 10:20-10:50

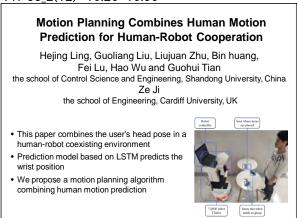
Robot Confrontation Based on Policy-Space Response Oracles


Mingxi Hu and Siyu Xia college of Artificial Intelligence, Nankai university, China Chenheng Zhang and Xian Guo college of Artificial Intelligence, Nankai university, China

- A novel and stable policy-space response oracles(PSRO) method is proposed.
- \bullet Our PSRO integrates $\alpha\text{-Rank}$ as the metastrategy solver and CMA-EPPS as the oracles solver.
- \bullet The method performs better than IBR, fictitious play and PSRO with $\alpha\text{-Rank}$ and Best Response.



Statistical results of robot confrontation trained with different algrithms


FrPo3_2(8) 10:20-10:50

FrPo3_2(10) 10:20-10:50

FrPo3_2(12) 10:20-10:50

Session Chair: Li Wen

Room : Foyer, 1F, 10:30-11:00, Friday, July 29

FrPo3_3(13) 10:20-10:50

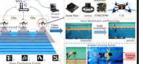
An Effective Training Strategy for Upper-limb **Rehabilitation Robots Based on Visual-haptic** Feedback Using Potential Field

Guang Feng and Lei Yang School of Mechatronic Engineering and Automation, Shanghai University, China Jiaji Zhang, Guohong Chai, Maoqin Li, and Guokun Zuo Ningbo Institute of Materials Technology and Engineering, CAS, China

- Upper-limb rehabilitation robot
- · Potential field control strategy based on a
- reference trajectory
- Visual-haptic feedback positively affected rehabilitation training

FrPo3 3(15) 10:20-10:50

RPAS: A Refined Positioning and Analysis System Based on Aerial Platform for Swimming Scenes Shijie Zhang and Zhongquan Liu, Hao Wang, Fan Sang, Jiaxin Li,


Yuxuan Guo, Xuan Pei, Jianglong Zhang, Tao Tang and Taogang Hou*

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China

1

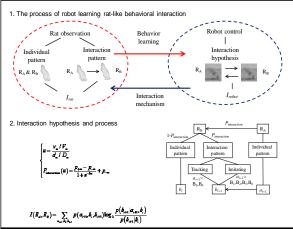
• A refined positioning and analysis system based on aerial platform for swimming scenes. • In static experiment, the minimum

position error is 0.002m, when the

The full system of our method.

It consists of the unmanned aircraft

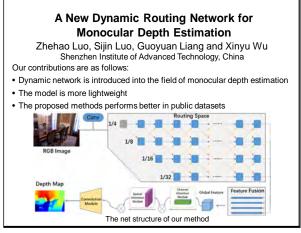
which achieves a refined positioning

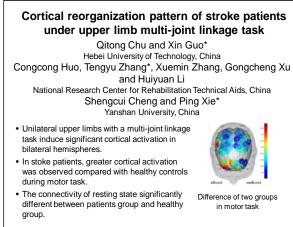

results in swimming scenes.

and the siamban tracking sys

ground truth is 2.1m. • The MAE is 0.0231m, showing high precision of our method compared to iмu system, the aruco positioning system,

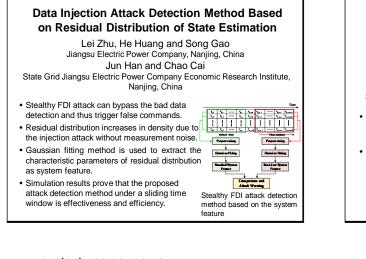
Great potential in some non-contact measurement scenes of our method.


FrPo3_3(17) 10:20-10:50

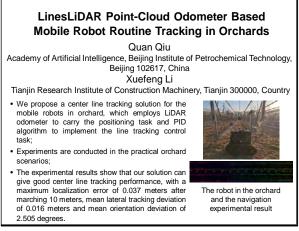

FrPo3_3(14) 10:20-10:50

FrPo3 3(16) 10:20-10:50

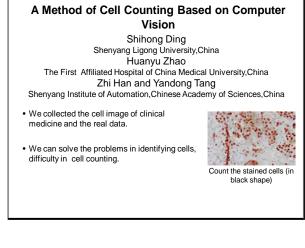
FrPo3_3(18) 10:20-10:50


Session Chair: Li Wen

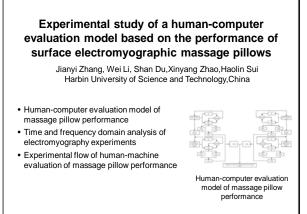
Room : Foyer, 1F, 10:30-11:00, Friday, July 29


FrPo3_4(19) 10:20-10:50

FrPo3_4(21) 10:20-10:50



FrPo3_4(23) 10:20-10:50



FrPo3_4(22) 10:20-10:50

FrPo3 4(20) 10:20-10:50

FrPo3_4(24) 10:20-10:50

Session Chair: Li Wen

Room : Foyer, 1F, 10:30-11:00, Friday, July 29

FrPo3_5(25) 10:20-10:50

Low-carbon design of leafy vegetable production system based on life cycle analysis and digital model

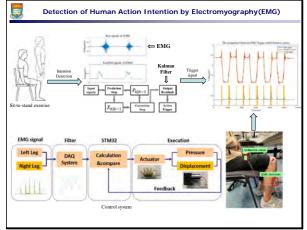
Guohua Gao, Xinyue Du, Zihua Zhang, Wenyue Liu, Shiyue Pan Faculty of Materials and Manufacturing, Beijing University of Technology, China

- In the design stage of production system, capacity and carbon emissions should be considered.
- The carbon emission quantification model of production system was established based on life cycle analysis.
- Establish digital simulation model of production system
- Through multi-factor and multi-level experiment, the parameter relationship of production system is analyzed.

FrPo3_5(27) 10:20-10:50

Electric Vehicle Regulation Technology Based on Deep Reinforcement Learning

Digital simulation model of


production system

Zhujian Ou¹, Xiaolong Xiao², Hang Yu³, Jianhua Yuan¹, Xiaowei Miao¹,Dongdong Huang¹

1.Nantong Power Supply Branch, 2.State Grid Jiangsu Electric Power Co., Ltd, 3.Southeast University

- This paper proposes an EV regulation method based on deep reinforcement learning(DRL). Through the management of charging and discharging of EV, while ensuring the stability of the voltage level of the distribution network, the network loss of the distribution network can be reduced.
- This method does not depend on the actual physical model and is more in line with the actual situation of the distribution network. Finally, the feasibility of the method is verified by simulation.

FrPo3_5(26) 10:20-10:50

FrPo3_5(28) 10:20-10:50

A Simulation Based Investigation Considering Carbon Emissions in Shanghai

Peng Cheng, Mingxing Guo, Chen Fu, Su Wang and Li Lan Shanghai Economic and Technological Research Institute, China Yuetong Huang Liyang Research Institute of Southeast University, China

- Based on Markov model and LEAP model to predict energy structure and energy demand
- Analyze the carbon emissions of Shanghai from 2019 to 2035 under different scenarios
- In the short term, industrial structure adjustment to carbon emissions reduction is
- the strongestIn the long term, clean energy substitution has
- a significant effect on carbon emissions reduction.

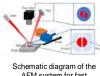
Carbon emissions in Shanghai under different scenarios

FrA1: Best Paper Session II

Session Chair: Li Wen

Room : Tianchi 1, 1/F, 11:00-12:30, Friday, July 29

FrA1(1) 10:50-11:05


Fast AFM probes switching method via Integrated dual-probes

Kaixuan Wang, Tie Yang, Jialin Shi, Peng Yu, Chanmin Su State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China Lianging Liu

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China

- · An integrated dual-probe design based
- on a common probe
- A single optical path lever for sensing.

AFM system for fast switching imaging using an integrated dual-probe

FrA1(3) 11:20-11:35

Classification of Individual Finger Motions Using Single-Site Mechanomyography by Optimized Long Short-Time Memory

Ahmad Saleh Asheghabadi and Saeed Bahrami Moqadam and Jing Xu

Mechanical Engineering, Tsinghua University, China

- Novel MMG sensor: A pair of MMG sensor is design to capture single-site MMG.
- · Features Fusion: To generate new features with multiple information
- Optimized Algorithm: LSTM algorithm is optimized by proposed method

FrA1(5) 11:50-12:05

Cable Assembly based on Robot Manipulation and Control

Xiaobin Zhang, Congjian Li and Ning Xi Department of IMSE, University of Hong Kong, Hong Kong S.A.R.

- · A deep learning model is trained to predict a deformable cable's shape
- A sampling-based optimization algorithm is applied to generate robot actions in the planning process
- · Another deep learning model is trained to generate robot actions in real time
- A dual-arm robot, ABB YuMi, is controlled to manipulate cables and put them into slots

Robot manipulating the cables

FrA1(2) 11:05-11:20

Robot Manipulation Skill Learning Based on **Dynamic Movement Primitive** Yunfeng Bai^{1, 2}, Fengming Li³, Man Zhao^{1, 2}, Wei Wang¹, Yibin Li^{1, 2}, and Rui Song^{1, 2}

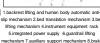
1. School of Control Science and Engineering, Shandong University, Jinan 250061, China

2. Engineering Research Center of Intelligent Unmanned System of Ministry of Education, Jinan 250061, China

- 3. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China
- · A robot automatic valve turning control strategy is proposed.
- · The learning control system learns motor skills from demonstrations through DMP.
- · The valve turning skills learned from human demonstration can be reproduced on the robot.


FrA1(4) 11:35-11:50

An Active Power Allocation Optimization Strategy for Wind Farm Frequency Response **Considering Fatigue Loads**


Yongheng Mao, Bingtuan Gao School of Electrical Engineering, Southeast University, China

- . In this paper, an active power allocation strategy for frequency regulation considering fatigue loads of wind farm is proposed.
- · An optimization strategy model to coordinate active power variation of wind turbines is presented and solved by genetic algorithm.
- · Simulation results verify that the proposed strategy can reduce the fatigue loads of wind farm remarkably while providing similar frequency response capability.

FrA1(6) 12:05-12:20

· Combined with process re-engineering can reduce the personnel consumption and improve the transport efficiency, safety, universality.

m instrum

Figure. General structure of transport robot

FrB2: Sensing and Recognition I

Session Chair: Qi Hu

Room : Songjiang, 2F, 14:00-15:30, Friday, July 29

FrB2(1) 13:30-13:45

Development of the Flexible Tactile Sensor for Safe Human-Robot Interaction Kun Yang, Xinkai Xia, Huanzhou Ma and Fan Zhang College of Information and Computer, TYUT, China

 The flexible tactile sensor is made by sponge mixed with graphene and it can convert the pressure of the contact surface into a resistance signal accurately.

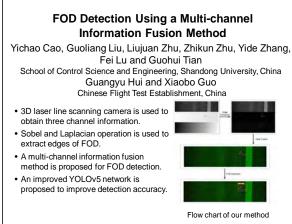
- There is a nearly linear relationship between resistance value of sensing unit and applied force (0 - 5N).
- The flexible tactile can provide fast response for the robot arm when the human body touches the sensor.

The human-robot interaction experiment.

FrB2(3) 14:00-14:15

Digital Twin-based Cement Rotary Kiln Simulation Training System

Zhuo Chao, Xiaohong Wang, Hongliang Yu and Shizeng Lu Department of Automation and Electrical Engineering, University of Jinan, China


- Allows operators to learn directly the various operating conditions of the rotary kiln part of the cement and to train in actual operation.
- The digital twin principle shows in real time in a virtual screen the faults and the impact of the trainer's operation of the control system on the cement production line.

3D model

• Exercise the ability to troubleshoot in both the control room and the production site through the cooperation of the control room operator and the field operator.

FrB2(5) 14:30-14:45

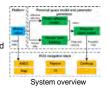
FrB2(2) 13:45-14:00

A Vision-Based Target Localization System for the Meal Assistance Robot

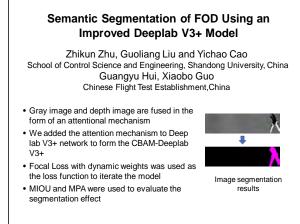
Xueyi Zhao and Diansheng Chen the School of Mechanical Engineering and Automation, Beihang University, China Guo Xiang and Chenghang Pan the School of Mechanical Engineering and Automation, Beihang University, China

- Different filtering methods are used for meals with different traits.
- Calculating food points with Gaussian distribution density.
- Estimating the weights of scooping points.Compute mouth pose using 2D to 3D

FrB2(4) 14:15-14:30


matching.

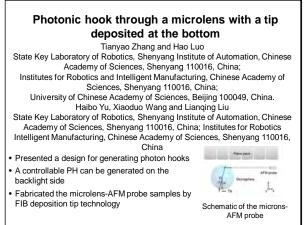
Dynamic and flexible personal space model and parameter generation method for socially-aware robot navigation


Zhe Zhao, Xianyu Qi, Yufei Zhao and Xiangdong Yang Beijing Institute of Mechanical Equipment, China Ziwei Liao and Wei Wang

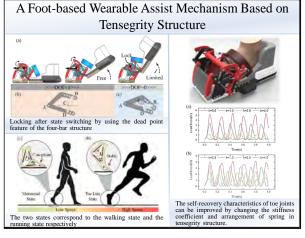
- School of Mechanical Engineering and Automation, Beihang University, China
- A basic social cost model based on the mixture of four-Gaussian functions is established.
- A dynamic model based on the relative speed and robot mood regulation is established.
 The parameter generation method of the

proposed model is introduced.

FrB2(6) 14:45-15:00



FrB3: Medical Robot I


Session Chair: Peng Su

Room : Baishan 1, 2F, 14:00-15:30, Friday, July 29

FrB3(1) 13:30-13:45

FrB3(3) 14:00-14:15

FrB3(5) 14:30-14:45

Research on lower limb rehabilitation training device based on gravity balance

Zhen zhang, Taisheng Zhang, Yanpeng Kan, Manman Xu

Anhui Polytechnic University, China

- lower limb rehabilitation training device for MMT-2 patients
- Gravity balance for the calf and thigh
 Mechanical structure designons and Kinematic analysis

3D diagram of the device

FrB3(2) 13:45-14:00

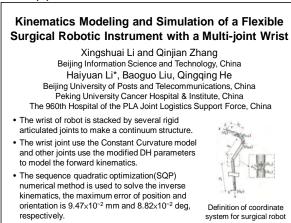
A Novel Unpowered Mechanical Robot with Vibrotactile Feedback for Upper Limb Coordination Rehabilitation

Yuxuan Lin and Han Xu Tongji Auckland Medical & Rehabilitation Equipment Research Center, Tongji Zhejiang College, China

- Purely mechanical design for active (Coordination Mode) and passive (Mirror Mode) training of the affected limb
- Vibratactile feedback for enhanced biofeedback
 Vibrotactile feedback helps finishing the task with
- higher quality and efficiency
- Low cost, compact and lightweight design for home use

The REHA-VABRO-COORDINATOR (RVC)

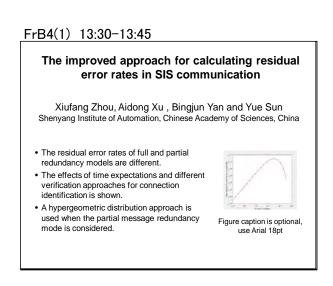
FrB3(4) 14:15-14:30

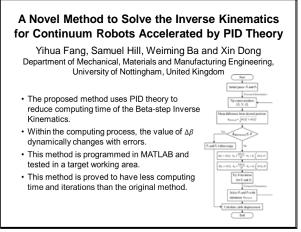

Research on exoskeleton structure design of hand function rehabilitation robot

Kexin Zuo, Ben Wang, and Yangwei Wang, Member, IEEE

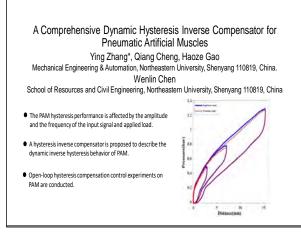
Northeast Forestry University, China

In order to develop a hand function rehabilitation device that is convenient for patients to wear and operate and has a simple structure, the physiological structure of fingers was analyzed. On the basis of the form and principle of finger movement, this paper proposes a design scheme for the exoskeleton structure of the hand function rehabilitation software with shape memory alloy (SMA) wire as the driver, establishes the driving model, and conducts a kinematic analysis of the simplified model of the finger, it is calculated that the length of alloy wire required for a normal finger to complete a limit buckling action is 600mm. A hand function rehabilitation robot prototype was developed and a test platform was built. A finger bending test and fingertip force test under different voltages were carried out to verify the performance of the hand function rehabilitation soft exoskeleton robot.


FrB3(6) 14:45-15:00


FrB4: Optimization and Control I

Session Chair: Yongliang Yang


Room : Baishan 2, 2F, 14:00-15:30, Friday, July 29

FrB4(3) 14:00-14:15

FrB4(5) 14:30-14:45

FrB4(2) 13:45-14:00

A Dimensional Parameter Optimization Method of Manipulator to Improve Manipulability

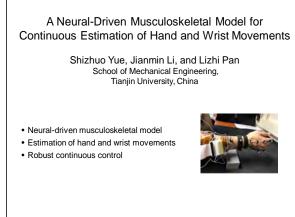
Zhi Li School of General Engineering, Beihang University, China Haoqin Gong*, Yuanhai Huang and Diansheng Chen School of Mechanical Engineering and Automation, Beihang University, China

 The configuration of a seven degree-offreedom manipulator is analyzed through decoupling

- Theoretical analysis is conducted to evaluate the dexterous workspace volume to improve the manipulability
- The optimization result is obtained and also verified by simulation

Configuration of the seven degree-of-freedom manipulator

FrB4(4) 14:15-14:30


Design and Implementation of a Highly Compatible Intelligent Video Analysis Framework

Lanfang Dong, Yongsheng Chen and Yuhang Zhang School of Computer Science and Technology, University of Science and Technology of China

- This paper presents an intelligent video analysis framework for multiple scenarios
- The framework is hierarchical, with clear data flow and strong compatibility
- The framework improves video processing speed using techniques such as pipelining, heterogeneous programming
- Experiments on eye-movement and expression recognition using the framework demonstrate the superiority of the framework

FrB4(6) 14:45-15:00

FrPo4: Poster Session 4

Session Chair: Li Wen

Room : Foyer, 1F, 15:30-16:00, Friday, July 29

FrPo4(1) 15:00-15:30

DCNN-based virtual synchronous generator control to improve frequency stability of PV-ESS station

Wei Zeng and Junjie Xiong State Grid Jiangxi Electric Power Research Institute, Nanchang, Jiangxi Zongqiang Qi and Xiaobo Dou

School of Electrical Engineering, Southeast University, Nanjing, Jiangsu

The virtual synchronous generator (VSG) based on the energy storage system is proposed to compensate the loss of inertia and damping of the power grid. Due to the introduction of inertia, VSG is more proce to power oscillation. In this article, the nonlinear relationship between inertia and angular velocity is analyzed, and daptive neural network (DCNN) control is applied to VSG. Based on this concept, an adaptive control strategy is proposed. First, the DCNN that elory as a simple algorithm, strong ability of learning, and fast learning rate is used to adjust virtual inertia adaptively. This strategy not only improves response but also reduces frequency overshoot in tracking the steady-state frequency. And then, based on the fixed damping ratio, the damping coefficient is requency oversnoot in tracking the steady-state frequency And then, based on the fixed damping ratio, the damping coefficient is tuned adaptively with the change of the inertia to further suppress power oscillation. The proposed strategy is supported by simulation results, which show that the strategy has good performance in damping of oscillation.

Overall control structure of the VSG with the DCNN controller

FrPo4(3) 15:00-15:30

Photovoltaic and energy storage control of partially observable distribution network based on deep reinforcement learning

Qiangsheng Bu, Pengpeng Lv and Fei Luo Economic Research Institution, State Grid Jiangsu Electric Power Co, China Kexin Zhang and Xiaobo Dou School of Electrical Engineering, Southeast University, China

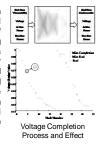
Ţ

Network loss reduction

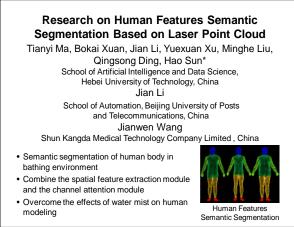
effect diagram

· Volatility and uncertainty brought by distributed power sources may lead to the over-limit of the distribution network voltage and the increase of network losses, photovoltaic and energy storage are selected as the control objects. In a this paper, a photovoltaic energy storage linkage control technology based on deep reinforcement learning is designed, and an example is used to verify the feasibility and effectiveness of the method proposed in this paper.

FrPo4(5) 15:00-15:30



FrPo4(2) 15:00-15:30


Data processing technology of distribution station area combined with convolutional neural network

Kexin Zhang, Xiaobo Dou, Hang Yu and Yongming Hu School of Electrical Engineering, Southeast University, China


. Now the station area has more problems in data collection and storage than the Central Asian side. Aiming at the problems of abnormal sampling period, abnormal sampling reference time, data noise, and missing data in the data of the station area, this paper proposes a data processing method combining convolutional neural network and mathematical methods to solve these problems in the station area, and constructs a station The accurate time series of regional data was obtained, and the feasibility of the method was verified by simulation.

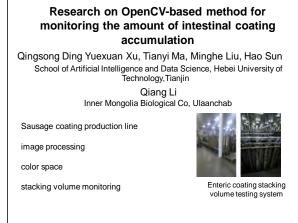
FrPo4(4) 15:00-15:30

FrPo4(6) 15:00-15:30

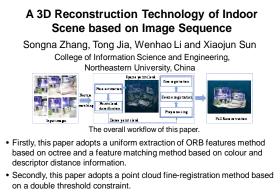
Session Chair: Li Wen

Room : Foyer, 1F, 15:30-16:00, Friday, July 29

FrPo4_2(7) 15:00-15:30

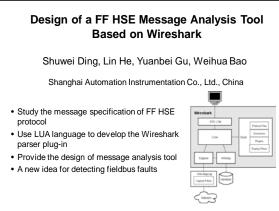

Economic Analysis of Waste Heat Utilization in Data Center under Different Business Models

Wei Fang, Jiaqi Li, Chenglei Sun , Fangyuan Pan State Grid (Beijing) Integrated Energy Planning and Design Institute Co., Ltd, China

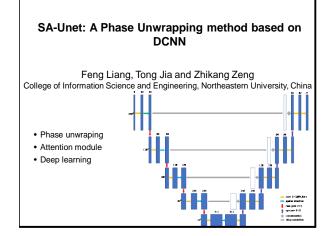

Tianheng Chen, Yi Ding State Grid Tianjin Electric Power Company, China

- The average annual net profit of the investor under BT mode is the highest.
- Under BOT mode, the profit of data center operators is stable .
- Operating lease mode are suitable for data center projects with lack of construction funds.

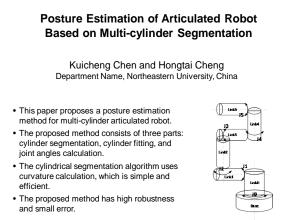
FrPo4_2(8) 15:00-15:30



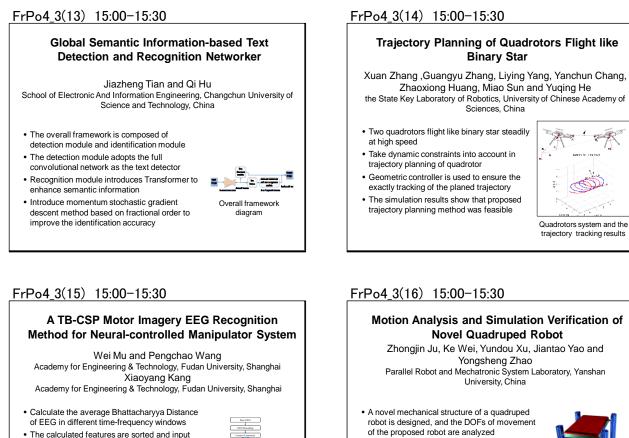
FrPo4_2(9) 15:00-15:30



 Finally, experimental analysis is carried out in a real indoor scene to verify the effectiveness of the proposed algorithm in reconstruction efficiency and accuracy

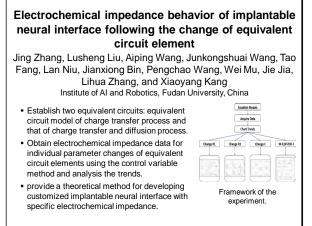

FrPo4_2(11) 15:00-15:30

FrPo4_2(10) 15:00-15:30



FrPo4_2(12) 15:00-15:30

Session Chair: Li Wen


Room : Foyer, 1F, 15:30-16:00, Friday, July 29

Framework of the

- into SVM and LDA for classification
- Generate control signals from EEG classification results and apply them to manipulator control
- The accuracy of the proposed method on manipulator control system Dataset A and Dataset B is 82.6% and 79.48% respectively

FrPo4_3(17) 15:00-15:30

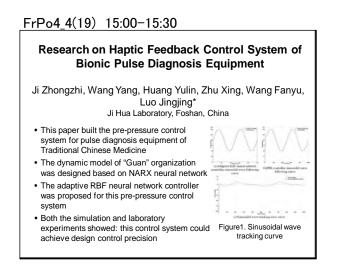
and ITRs is 26.862 bits/m.

 The influence of different joint configurations on the performance of a quadruped robot is

• Trot gait and crawl gait are designed for 4-

SPRR quadruped robot, and the influence of

analyzed by the screw theory


General design of the system

A kind of quadruped robot

with novel structure is

Session Chair: Li Wen

Room : Foyer, 1F, 15:30-16:00, Friday, July 29

FrPo4 4(21) 15:00-15:30

A Remotely Driven Finger Rehabilitation Robot for Passive and Active Rehabilitation

Hongbo Wang Academy for Engineering & Technology, Fudan University, China Jiazheng Du and Yongshun Zhang Key Laboratory of Parallel Robot, Yanshan University, China

- A robot with 9 DoF for the rehabilitation of five fingers in human hands
- The drive distal arrangement reduces the weight of the system and the wear burden

· The two flexible components, alloy wire and spring, improves the adaptability and fault tolerance

FrPo4 4(23) 15:00-15:30

FrPo4 4(20) 15:00-15:30

Exploring Humanoid Robot Face Preference Using Brain Functional Connectivity and Graph **Neural Network**

Pengchao Wang, Wei Mu, Gege Zhan, Aiping Wang, Zuoting Song, Tao Fang, Xueze Zhang, Junkongshuai Wang, Lan Niu, Jianxiong Bin, Lihua Zhang, Jie Jia, and Xiaoyang Kang Institute of AI and Robotics. Fudan University, China · Analysis of humanoid robot face preferences

- using brain functional connectivity
- Using the matrix obtained based on brain functional connectivity measurements as a GNN connectivity matrix.
- · The average accuracy of our proposed method reached 73.47%. There are differences in the functional

The framework of face preference detection in humanoid robots is based connectivity of preferred and non-preferred on EEG signals.

FrPo4 4(22) 15:00-15:30

brains.

Research on Variable Workspace of Continuum Robot for Organ Protection and Multi-arm Cooperation

Fuhao Wang, Hongbo Wang, Jingjing Luo, Xiaoyang Kang, Xueze Zhang, Jiawei Wang, Qiqi Pan Academy for Engineering & Technology, Fudan Universit, China

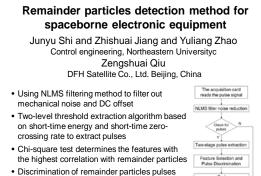
- · Surgical continuum robot could damage organs or collide
- · Variable workspace: In the inherent workspace, the intersections caused by othe factors are eliminated.
- The variable workspace is dynamic, organ protection can be achieved at any time.
- · Variable workspace prevents collisions in Multi-arm cooperation

Fig. Organ protection and multi-arm cooperation

FrPo4_4(24) 15:00-15:30

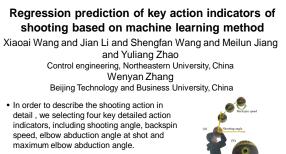
An Acupoint Detection Approach for Robotic Upper Limb Acupuncture Therapy Bin Cai^{1,2}, Peiyang Sun³, Meng Li³, Erkang Cheng¹, Zhiyong Sun¹, Bo Song^{1*} 1 Institute of Intelligent Machines. HFIPS. Chinese Academy of Sciences: 2 University of Science and Technology of China: 3 The Second Affiliated Hospital of Anhui University of Chinese Medicine In this paper, we propose a coarse to refine neural network model to detect and locate the acupoints on the upper limb for robotic

acupuncture therapy. Specifically, a target coarse region is obtained by model each region as the center point of its bounding box in the coarse step, the target coarse region is used to define region of interests (ROI) for refine step. Then, the acupoints are located by transforming the acupoints position estimation problem to estimating the heatmaps of each acupoints using the cropped ROI from the original image.


can effectively detect the acupoints with high accuracy.

Session Chair: Li Wen

Room : Foyer, 1F, 15:30-16:00, Friday, July 29


FrPo4_5(25) 15:00-15:30

with selected features

Remainder particles detection flow chart

FrPo4 5(27) 15:00-15:30

- Image processing and eRock intelligent basketball are used to obtain the real values of four key action data.
- · Five machine learning methods are used to perform regression prediction on four key action indicators

FrPo4_5(26) 15:00-15:30

The effect of tailored-made home-based exercise program on the training adherence of old patients underwent total hip and knee arthroplasty: A Randomized Controlled Pilot Study

Rongke Lv, Kangping Song, Peihui Wu, Yangfan Xu Yangyang Lin and Yuling Wang

- tailored-made home-based exercise program
- old patients underwent total hip and knee .

FrC2: Sensing and Recognition II

Session Chair: Qi Hu

Room : Songjiang, 2F, 16:30-17:30, Friday, July 29

FrC2(1) 15:30-15:45

Microarray Image Segmentation Based on Level Set and Regridding

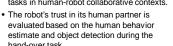
MD Shahriar Hague, Nishith Ranjan Biswas, Mubeen Afzal, Daria Hussain Antora and Lu Bibo Computer Science and Technology, Henan Polytechnic University, China

- · Importance of microarray images
- Difficulties of microarray segementation
- · Some conventional method for microarray segmentation
- · A suitable method for the segmentation of microarray image

FrC2(2) 15:45-16:00

A Parkinson's Bradykinesia Recognition System **Based on Deep Learning Method** Lina Tong, Daisong Liu and Mingjia Zhang School of Mechanical Electronic & Information Engineering, Chinese University of Mining and Technology-Beijing, China Liang Peng State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, China Academy of Science, China · A wristband and anklet was designed to identify Parkinson's bradykinesia · Subjects and data collection were from Beijing Union Medical College Hospital. · Long-short-term memory network was used to identify Parkinson's bradykinesia.

 The recognition rate of bradykinesia symptoms in Parkinson's patients was 98.6%


FrC2(3) 16:00-16:15

A POMDP-based Robot-Human Trust Model for **Human-Robot Collaboration**

Pallavi Tilloo, Jesse Parron, Omar Obidat, Michelle Zhu, and Weitian Wang*

Department of Computer Science, Montclair State University, Montclair, USA

- Trust is a cognitive ability that can be said to be dependent on behavioral consistency.
- · A POMDP-based computational robothuman trust model is proposed for hand-over tasks in human-robot collaborative contexts.

evaluated based on the human behavior estimate and object detection during the hand-over task.

· We verify the proposed approach in realworld human-robot collaborative tasks.

FrC2(5) 16:30-16:45

Towards Real-Time Synchronization of mBot's Motion with Musical Songs

Wayne Jason LI St. Stephen's College, Stanley, Hong Kong SAR, China Yuqing TIAN, Chun KWOK and Ning XI Dept. of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong SAR, China

• A computer code was developed to control the movements and LED colors of an mBot based on real-time recognition of musical sound amplitude and frequency.

 Analyze the impact of noise and embedded computing performance on experimental results.

Experimental results of the mBot responding to different musical sou

FrC2(4) 16:15-16:30

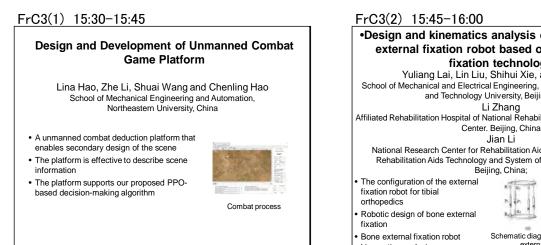
Body Alcohol Level Detection Based on Measurements of Human Balancing

Jia-Ming Chen, Song Wang, Yu-qing Tian and Wen-bo Yuan Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, China Ning XI , Fellow, IEEE Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, China

- Developed an optics-based new sensor capable of assessing human balance
- · Calculated center of pressure (CoP) and center of gravity (CoG) before and after alcohol consumption
- Analyzed the correlations between BAC and the cross-entropy of center of pressure (CoP) and center of gravity (CoG)

FrC2(6) 16:45-17:00

Scheduling Optimization of Automatic Biochemical Analyzer based on Particle Swarm Optimization


Mingyue Zhao, Mingxing Lin and Wenjing Fan School of Mechanical Engineering, Shandong University, China Qinghua Xie and Bo Wang JINAN BIOBASE BIOTECH CO., LTD, China

Automatic biochemical immune analyzer is often used in clinical examination and diagnosis, and its efficiency is very important. At present, most automatic biochemical analyzers use fixed period algorithm for scheduling, which has long detection time, low efficiency and intermittency. In this paper, a scheduling method based on particle swarm optimization (PSO) algorithm is proposed. The algorithm adopts sequence coding method, and approximates the scheduling problem of automatic biochemical analyzer to ATSP, and establishes ATSP model suitable for the scheduling problem of fully automatic biochemical analyzer, so as to optimize the scheduling of automatic biochemical analyzer.

FrC3: Medical Robot II

Session Chair: Haiyuan Li

Room : Baishan 1, 2F, 16:30-17:30, Friday, July 29

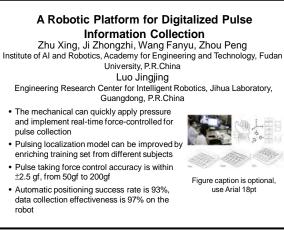
FrC3(3) 16:00-16:15

Modeling and Validation of Safe Space in the **Operating Area of Minimally Invasive Thyroid** Surgery Robot

Chao Yue, Peng Su*, Jiang Li, Qinran Zhang, and Qinjian Zhang School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing, China Baoguo Liu

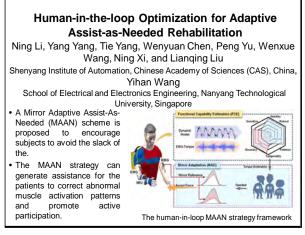
Department of Head & Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, China

Neck pull compensation model


and flexible arm workspace

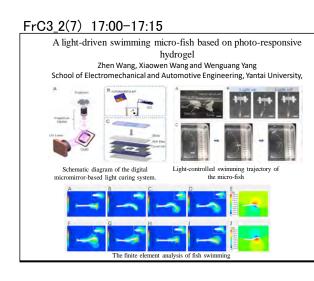

- · Modeling of the intracavity flexible arm
- · Modeling of the surgical workspace
- Modeling of neck pull compensation

· Simulation verification and analysis



FrC3(5) 16:30-16:45

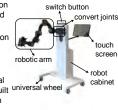
FrC3(4) 16:15-16:30


FrC3(6) 16:45-17:00

FrC3: Medical Robot II (cont.)

Session Chair: Haiyuan Li

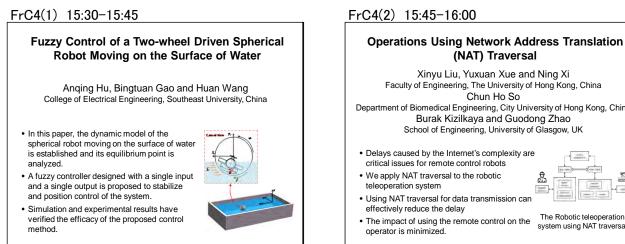
Room : Baishan 1, 2F, 16:30-17:30, Friday, July 29



FrC3_2(8) 17:15-17:30

Human-Computer Interaction Technology for Upper Limb Rehabilitation Based on Gesture Recognition Control

Xuedong Zhu ,Mingxing Lin, Yubo Liu, Wenjing Fan and Chaoguo Shi School of Mechanical Engineering,Shandong University, China


- A two-limb universal upper limb rehabilitation robot with 7 degrees of freedom is designed to satisfy the use of left and right limbs
- The non-contact human-computer interaction gesture recognition technology based on Kinect is studied to respectively realize the rehabilitation of both right and left hands
- A human-computer interaction experimental platform based on gesture recognition is built universal wheel to test and realize a variety of rehabilitation modes for left and right limb training

FrC4: Optimization and Control II

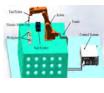
Session Chair: Yongliang Yang

Room : Baishan 2, 2F, 16:30-17:30, Friday, July 29

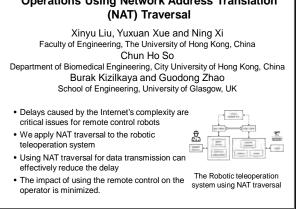
FrC4(3) 16:00-16:15

Fastening Operation Analysis and Optimization with Desktop

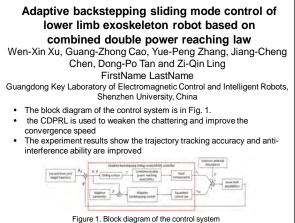
Li Cheng*, Xin Cong, Chaohai Xu, Ze Huang College of Mechanical Engineering, Shenyang University, ShenYang, China.


- · Propose the converting human tightening assembly action into robot assembly action method.
- · Simulate and optimize the trajectory and find the comfortable position.
- · Optimize the evaluation index of production efficiency, from the joint angle, angular acceleration and torque.
- · Use the experiment to find the space trajectory position that is more suitable.

FrC4(5) 16:30-16:45


MorphoSys Bridges Morphogenesis in Swarms of Cells and Robots

Yongliang Yang, Mengyun Pan, Long Cui and Lianqing Liu State key laboratory of robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China


- MorphoSys: a R&D platform for swarm robotics integrating cell swarms and robot swarms
- The platform includes MorphoCell. MorphoSim, and MorphoBot.
- The platform aims to develop a reliable efficient, and quantitative designing methodology for swarm robotics

The robotic fastening system

FrC4(4) 16:15-16:30

FrC4(6) 16:45-17:00

Saturday Sessions

SaA2: Mobile Robotics I

Session Chair: Zhenzhong Liu

Room : Songjiang, 2F, 10:50-12:05, Saturday, July 30

SaA2(1) 11:00-11:15

Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots

Xiaoliang Fan, Jin Sui, Bi Zhang and Chunguang Bu* Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China

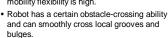
Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Qlearning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.

SaA2(3) 11:30-11:45

Configuration Synthesis of Leg Mechanism of Quadruped Robot of Deployable Mechanism

Boxuan Zhang College of Mechanical and Electrical Engineering, NEFU, China Zehao Yuan College of Mechanical and Electrical Engineering, NEFU, China

 In order to solve the problem of the optimization of the joint of leg mechanism of the quadruped robot platforms, the leg mechanism of the quadruped robot platform is configured and synthesized. The kinematic chain type is constructed according to the geometric conditions and the restrained relationship, and through kinematics and dynamics simulating the constrained kinematic chain is optimized.


 configuration synthesis; constrained screw synthesis method; robot mechanism; kinematics

SaA2(2) 11:15-11:30

Design of Two-Stage Passive Compliant of Wall-Climbing Robot with High Curvature Self-Adaptation Zhenyu Yang, Yifeng Song, Hongguang Wang, Yong Chang, Fengren Jing

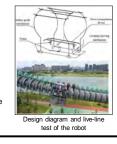
Shenyang Institute of Automation, Chinese Academy of Sciences, China Zhenchun Deng

- Shenyang Ligong University, China
- In the variable curvature environment, the robot has both adsorption stability and adaptability to the curvature wall.
- In the process of robot movement, the deformation and force of the sealing skirt are small, the load capacity is large, and the mobility flexibility is high.

SaA2(4) 11:45-12:00

SaA3: Robots and Learning

Session Chair: Tong Jia


Room : Baishan 1, 2F, 10:50-12:05, Saturday, July 30

SaA3(1) 11:00-11:15

Development of a Robot for 500-kV EHV Power **Transmission Lines Faulty Insulator**

Tianyu Zhang^{1,2,3}, Hongguang Wang^{1,2*}, Xin'an Pan^{1,2}, Peng Lv^{1,2}, Lijuan Guo⁴ and Yifeng Song^{1,2} State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China ³Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China ⁹University of Chinese Academy of Sciences, China ⁴Electric Power Research Institute of Guanga Power Grid Co., China

- · An insulator detection robot was designed which moves along horizontal insulator strings and suspended insulator strings.
- · This paper introduced its motion principle and analyzed its adaptability.
- The functionalities and characteristics of the robot were verified by lab test and field test.
- · All tests suggest that the robot has such advantages as stability, adaptability, high detection efficiency, and strong anti-interference ability under 500-kV.

SaA3(3) 11:30-11:45

Research on Built-in power supply technology of AUV based on the wave energy Fengmei JING , Song WANG and Yunlei MEI College of Mechanical Engineering, Beijing Institute of Petrochemical

Technology, Beijing Xiongbo ZHENG , Mingze JI

College of Mathematics Science, Harbin Engineering University, Harbin

- · This paper presents a built-in WEC device for
- underwater docking station.
- · The inertial vibrator converts wave energy into electric energy through PTO system.
- The performance and the efficiency of the device was evaluated
- It can supply power for marine equipment, and Fig.1 Structure diagram of has considerable application prospects.

the working principles of the WEC

SaA3(2) 11:15-11:30

Cause Analysis of Bolt Seizure Failure and Experimental Study On Influencing Factors

Xiaoyu Liu, Aixuan Zhang, Zhongwei Zhang*, Kai Liu, Xinggao Zhu and Weiliang Chen China Astronautics Standards Institute,

• This paper analyzes the causes of thread seizure failure, and summarizes the main causes of bolt seizure failure. The thread connection combination of titanium alloy bolt and self-locking nut is selected, and the influence law of the main influencing factors (installation speed, installation preload, surface treatment and lubrication) on the seizure failure of threaded fasteners is studied by testing. It is found that the larger the installation speed and installation torque, the thread pair is more prone to occur seizure failure; The selection of appropriate surface treatment can improve the anti seizing ability of thread pair: Lubrication measures for threaded fasteners can effectively improve the anti seizure ability.

SaA3(4) 11:45-12:00

Research status of phantom limb pain: based on CiteSpace analysis

Hong M. Liu, Zeng Y. Li, Yu B. Fan, Wei Y. Ren*, Hui Q. Luan* Objective The CiteSpace visual analysis software is used to explore the hotspots and frontiers of researches on phantom limb pain. Methods: Using literature visualization tool CiteSpace, we have analyzed the literature on "phantom limb pain" collected by English WOS database from 2000 to 2020, to summarize the status quo and trend of phantom limb pain research in the past two decades. Results: A total of 1542 international literatures are obtained. Researchers mainly focus on the pathological mechanisms and clinical treatment methods of different types of phantom limb pain. Furthermore, most authors prefer small-scale collaborative research. Most of academic achievements published by universities in Britain. Germany and the United States, and the United States is in a leading position in academic research. In addition, the classical and key literatures in the field of phantom limb pain mainly focus on the central nervous system, peripheral nervous system, cortical reorganization and other pathological mechanisms, as well as drug therapy and a variety of physical therapy. Conclusion: The CiteSpace-based analysis can provide a more objective and scientific understanding of the research status, hotspots and frontiers of phantom limb pain, which is of great significance to its future research.

SaA4: SLAM and Navigation

Session Chair: Jian Li

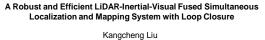
Room : Baishan 2, 2F, 10:50-12:05, Saturday, July 30

SaA4(1) 11:00-11:15

 IAVSAC proposed by us: reduce the computational time in discriminating the wrong feature matches

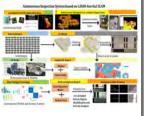
 Handling the IMU: Complementary Filter and Pre-integration

SaA4(3) 11:30-11:45


An Unmanned Vehicle Inspection System for **Airport Runways**

Liujuan Zhu, Guoliang Liu, Yichao Cao, Bin Huang and Guohui Tian School of Control Science and Engineering, Shandong University, Jinan, China

Xiaobo Guo and Guangyu Hui Chinese Flight Test Establishment, Xi'an, China


- · Proposed a self-driving unmanned vehicle inspection system innovatively.
- Used dual lidar fusion to expand the detection range and reduce blind spots
- Improved point cloud clustering algorithm.
- · Integrated path planning, automatic cruise, foreign object detection and other functions

SaA4(5) 12:00-12:15

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China

- Firstly, we have proposed a tightly coupled LiDAR-Visual-Inertial fusion SLAM (LVI-SLAM) framework
- Secondly, we have proposed to project the images obtained in the VIO system into 3D to compensate the optimization errors caused by long-term drifting of LiDAR odometry
- Thirdly, we have proposed the frontend iterative Kalman Filter-based odometry for the tightly coupled frontend optimization of our LVI-SLAM system.

Overall System

SaA4(2) 11:15-11:30

A Robust Seabed Terrain Contour Aid Navigation Method Facing the Smooth Terrain

Wenjun Zhang, Dong Ma, Jingxuan Gao, Teng Ma, Yueyang Ben Science and Technology on Underwater Vehicles Laboratory, Harbin Engineering University, China

College of Nautical and Naval Engineering, Dalian Ocean University, China

- A robust terrain contour aid navigation(TCAN)
- method facing the smooth terrain
- Considering the error characteristics of an inertial navigation system
- · A terrain measurement confidence interval calculation method
- · Can realize long-range underwater precise navigation in the smooth terrain areas

Architecture of the TCAN system

SaA4(4) 11:45-12:00

Collaborative Visual Inertial SLAM with KNN Map Matching

Boyang Liu¹, Guoliang Liu⁴ and Hongyu Lu⁵ School of Control Science and Engineering, Shandong University, China Zihao Zhang^2 and Dongning Hao^3 and Yazhou $\rm Meng^6$ and Xiang $\rm Lu^7$ Hisense Visual Technology Co., Ltd., China

- A collaborative visual inertial SLAM system based on VINS-Fusion is proposed. • The KNN Map Matching method is
- proposed to solve mismatch.
- The distance error is less than 5cm and the angle error is less than 5° on EuRoC dataset.

The fusion results on the EuRoC dataset

SaB2: Mobile Robotics II

Session Chair: Jing Xu

Room : Songjiang, 2F, 13:30-14:45, Saturday, July 30

Multi-sensor triple fusion

scheme

•

5

SaB2(1) 13:30-13:45

Map Creation of Indoor mobile Robot Based on Multisensor Fusion with Gradually Increasing Accuracy

Zhanghai Luo Electronic Information Engineering, West Normal University, China Zhengyong Feng Electronic Information Engineering, West Normal University, China

- A SLAM method for three-step fusion of multi-
- sensor data is implemented.
- First step data fusion for wheel odometer and inertial measurement unit (IMU).
- Perform the first step data fusion and lidar data for the second step data fusion.
- Perform the third-step data fusion of the second-step data fusion and the depth camera data.

Human-like Walking of Biped Robot with Foot Rotation Using Passive Metatarsophalangeal Joint Xiaolin Dai^{1, 2}, Yixiang Liu^{1, 2}, Xinyu Liu³, Xizhe Zang⁴, Rui Song^{1, 2}, and Yibin Li^{1, 2}

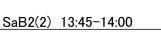
1. School of Control Science and Engineering, Shandong University, Jinan 250061, China

2. Engineering Research Center of Intelligent Unmanned System of Ministry of Education, Jinan 250061, China

- 3. Jiangsu Automation Research Institute, Lianyungang 222000, China
- 4. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China

Passive metatarsophalangeal joint

- is added to the biped robot model.
- A walking controller based on finite state machine is proposed.
- The whole foot-ground contact process of human walking is simulated on the biped robot.
- The simulation model for dynamic walking of the biped robot

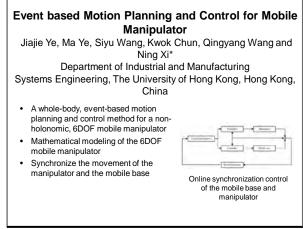

SaB2(5) 14:30-14:45

Development of a Crawling Robot for Large Steel Strcture Welding

Xiaoteng WANG China Railway Construction Heavy Industries, China Gang CHEN College of information of science and Engineering, Jiaxing University, China

- A welding robot with six axis manipulator based
- on a crawler chassis is designed;A feature recognition method is adopted for the
- guidance of the crawling robot;Process control algorithm is optimized to guide
- the robot for real time positioning/welding;A girth weld of total length of 28.6 meters was welded by the robot.

crawling welding robot



- We develop an adaptive architecture to search the workspace with or without the mobile base.We propose a dynamic programming method
- to generate the mobile parallel manipulator's feasible and optimal trajectory.

• Experiment results verify the method's feasibility and effectiveness

SaB2(4) 14:15-14:30

60

SaB3: Mechanism and Control

Session Chair: Tong Jia

Room : Baishan 1, 2F, 13:30-14:45, Saturday, July 30

SaB3(1) 13:30-13:45

SaB3(3) 14:00-14:15

Semi-Supervised Confidence-Level-based Contrastive Discrimination for Class-Imbalanced Semantic Segmentation Kangcheng Liu Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China

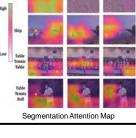
which

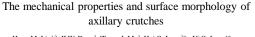
· To achieve context awareness, we propose using context-aware pixel-level contrastive learning to make our model achieve prediction consistency under various of transformations.

· To achieve context consistency, we

propose the first confidence-level based contrastive loss, which

encourage the high-confident network

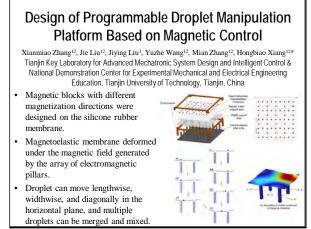

To eliminating overfitting in the class-


imbalanced segmentation, we propose the data balance loss to replace the traditional cross entropy loss.

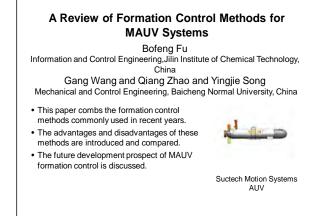
predictions.

Segmentation Attention Map

SaB3(5) 14:30-14:45



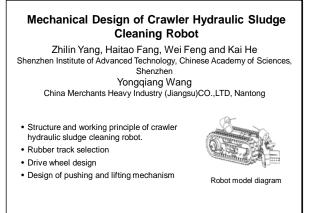
Hong M. Liu^{1,2}, JI W. Duan³, Zhong J. Mo³, Hui Q. Luan^{3*}, Yi Q. Luan^{4*} 1.School of Biological Science and Medical Engineering, Beihang University, Beijing, China;


2. Rehabilitation Hospital Affiliated to National Research Center for Rehabilitation Technical Aids, Beijing, China; 3.National Research Center for Rehabilitation Technical Aids, Beijing, China; 4. Stainless steel plant, Shandong Taishan Steel Group Co., Ltd, JiNan, China

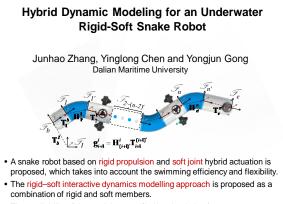
 Abstract—To study the surface morphology and mechanical properties the side of bows
 of domestic axillary crutches in rehabilitation aids marketed. Methods According to the experimental principle, the static mechanical properties of three axillary crutches were detected by automation mechanical loading platform, the surface morphology of side bows of axillary crutches was observed by scanning electron microscope. Results There is no significant differences in the surface microcracks of the three samples. Sample B and C have cracks and permanent deformation on the side of the bows, while sample A has no cracks and deformation. Surface microcracks of axillary crutches have little effect on static mechanical properties. Using the automatic mechanical loading platform to do static loading experiments, the force loading position of the axillary crutches is in line with the actual application, and the experimental results are more intuitive.

SaB3(2) 13:45-14:00

SaB3(4) 14:15-14:30



SaB4: Industrial Robotics and Applications

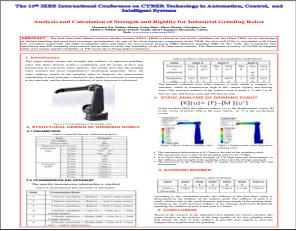

Session Chair: Jian Li

Room : Baishan 2, 2F, 13:30-14:45, Saturday, July 30

SaB4(1) 13:30-13:45



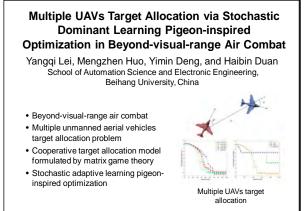
SaB4(3) 14:00-14:15



• The availability of the model are verified by simulating four cases.

SaB4(2) 13:45-14:00

SaB4(4) 14:15-14:30



SaC2: Machine Learning and Applications

Session Chair: Jing Xu

Room : Songjiang, 2F, 15:05-16:05, Saturday, July 30

SaC2(1) 15:30-15:45

SaC2(3) 16:00-16:15

A Teleoperated Manipulator Control System Based on Surface Electromyography Using Deep Learning Zhiping Lai, Xueze Zhang, Junkongshuai Wang, Wei Mu, Aiping Wang, Lan Niu, Lihua Zhang, Hongbo Wang and Xiaoyang Kang Institute of Al and Robotics, Fudan University, China usitute of Al and Robotics, Fudan University, China Framework of the sEMG-based teleoperated manipulator control system. • Spatial-temporal convolutional network

Majority voting

SaC2(2) 15:45-16:00

Research of Evaluation Method of Cleaning Performance forCleaning Robots Based on Machine Learning

Qing Huang ,Panchao Liu , Huimin Zeng and Ruiqi Zheng Department of Research and Development, Center Testing International Group Co.,Ltd.(CTI), China

- This study proposes a evaluation method of cleaning performance for cleaning robots
- The stain recognition model established in this study can identify stains with high precision
- The evaluation model considers the multiple impact factors and the objective weight of each impact factor

Figure caption is optional, use Arial 18pt

• The evaluation model can further be used in different types of cleaning robots

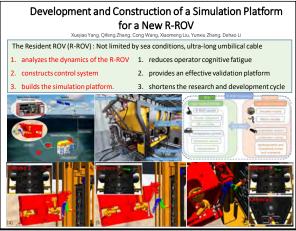
SaC2(4) 16:15-16:30

Initial value selection strategy of glide trajectory based on Legendre pseudospectral Chuantao Ye , Zhiqin Liu and Jun Huang School of Computer Science and Technology, Southwest University of Science

School of Computer Science and Technology, Southwest University of Science and Technology, China

- The pseudospectral method is combined with the affine and sequential quadratic programming algorithms
- The introduction of the bionic algorithm reduces the number of iterations for problem solving.
- solving.

 Reduces the possibility of solving the Internonlinear programming problem due to bad initial value divergence


Integrated numerical model of x-51A similar vehiclen

SaC3: Intelligent Sensing and Control

Session Chair: Tong Jia

Room : Baishan 1, 2F, 15:05-16:05, Saturday, July 30

SaC3(1) 15:30-15:45

SaC3(3) 16:00-16:15

Meal target detection based on improved YoloV3 algorithm

WenTao Huang, Lan Wang and Yan Li Mechanical and Electrical Engineering, Harbin Engineering University, China

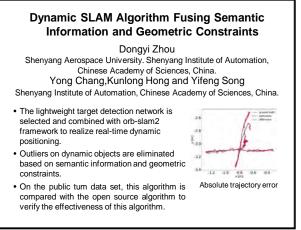
- Based on the improved Retinex algorithm, this paper preprocesses the dataset images.
- By adding AQ module and MQ prediction layer, this paper designs an improved Yolov3 model.
- The model improves accuracy by 4.15% and speed by 16.1% compared with the unimproved model.

Meal target detection

SaC3(2) 15:45-16:00

Virtual Human-machine Interaction Algorithm in Astronaut Virtual Training

> Lingjie Lin, Lan Wang, Ying Chang Lixun Zhang and Feng Xue College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin


- Virtual human-machine interaction force in the process of single person corruing objects
- the process of single person carrying objects • The solution of VHMIF in the process of two people cooperating to carry objects
- Stability analysis of algorithm

SaC4: Internet of Things

Session Chair: Xingyuan Wang

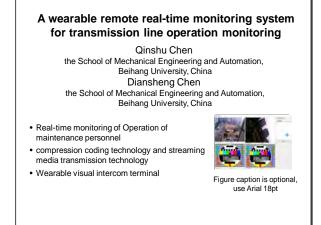
Room : Baishan 2, 2F, 15:05-16:05, Saturday, July 30

SaC4(1) 15:30-15:45

SaC4(3) 16:00-16:15

Usage of Colloidal AFM Probe for Research in Effects of Water Layer Evaporation on Interfacial Adhesion between Cellulose Surfaces

Junyuan Geng, Hao Zhang, Xianghe Meng, Haibo Gao, Weibin Rong and Hui Xie


The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, China

- Preparing a cellulose colloidal AFM probe
- with micromanipulation; · Time-dependent characterization of topography and interfacial adhesion between cellulose surfaces during water
- evaporation using AFM; This research is meaningful to adjustment of process parameters in paper or textile industry.

Time-dependent relationship of interfacial adhesion between cellulose surfaces with water evaporation

SaC4(2) 15:45-16:00

SaC4(4) 16:15-16:30

Research on DMP-based gait generation and control method for prosthetic limbs Meigi Liu, Bokai Xuan School of Artificial Intelligence and Data Science, Hebei University of Technology, China Yifei Liu, Yanli Geng School of Artificial Intelligence and Data Science, Hebei University of Technology, China Analysis and modeling of human load-bearing walking lower limb motion · Gait generation based on dynamic motion primitives Prosthetic testbed modeling based on the Lie group Lie algebra

 Sliding-Mode control-based control of a prosthetic testbed

Author Index

Index of Authors

		Chen, Diansheng	FrB4
- A -			FrPo4
- ~ -			SaC4
Afzal, Mubeen	FrC2	Chen, Dicai	ThA1
Akraminejad, Nikki	ThC2	Chen, Donglei	ThC4
An, Aimin	ThPo2	Chen, Fei	ThA1
An, Haibo	ThPo1	CHEN, Gang	SaB2
An, Huiyan	FrC3	Chen, Heping	ThPo1
An, Yi	ThPo1	Chen, Jiaming	FrC2
Antora, Daria Hussain	FrC2	Chen, Jiangcheng	FrC4
Assal, Samy	ThA1	Chen, Jiang-Cheng	ThC2
			ThC3
- B -		Chen, Ken	SaB2
	5.54	Chen, Kuicheng	FrPo4
Ba, Weiming	FrB4	Chen, Li	SaA4
Bahrami Moqadam, Saeed	ThC2	Chen, Lingxing	FrPo3
	FrA1	Chen, Peng	FrPo3
Bai, Ying	ThC2	Chen, Qinshu	SaC4
Bai, Yunfeng	FrA1	Chen, Shaocong	FrPo3
Bao, Haifeng	ThPo2	chen, Tianhen	FrPo4
Bao, Weihua	FrPo4	Chen, Wanxin	ThPo1 FrC3
Ben, Yueyang	SaA4 ThPo1	Chen, Wei	SaA3
Bi, Sheng	ThPo2	Chen, Weiliang Chen, Wenlin	FrB4
Bibo, Lu	FrC2	Chen, Wenyuan	FIB4 FrC3
Bin, Jianxiong	FrPo4	Chen, Xi'ai	ThB2
Bin, sianxiong	FrPo4	Chen, Xrai	ThB2
	FrPo4	Chen, Xingyu	ThPo2
	FrPo4	Chen, Xu	FrPo4
Bingbing, Yuan	ThPo1	Chen, Yang	ThPo2
Biswas, Nishith Ranjan	FrC2	Chen, Yanjie	ThB4
Bo, Wen	ThPo2	Chen, Yao	ThPo2
Bu, Chunguang	SaA2	Chen, Yinglong	SaB4
Bu, Qiangsheng	FrPo4	Chen, Yongsheng	FrB4
,		Chen, Youdong	ThPo2
0		Chen, Yujing	ThC4
- C -		Cheng, Erkang	FrPo4
Cai, Bin	FrPo4	Cheng, Hongtai	ThPo2
Cai, Chao	FrPo3	S, S	FrPo4
Cai, Mengxiang	ThPo2	Cheng, Li	FrC4
	ThPo2	Cheng, Long	ThB2
Cai, Xin	ThB3	Cheng, Qiang	FrB4
Cai, Yuwei	ThPo2	Cheng, Shengcui	FrPo3
	ThPo2	Cheng, Sujun	ThB4
Cao, Chuqing	SaB4	Cheng, Tao	ThPo2
Cao, Guangzhong	ThC2	Chenyu, Cheng	ThC3
	ThC3	Chi, Hao	SaB2
	FrC4	Chu, Chenxi	ThC2
Cao, Tieze	ThPo2	Chu, Qitong	FrPo3
Cao, Yichao	ThC3	Chun, Kwok	SaB2
	FrB2	Cong, Ming	ThPo1
	FrB2	Cong, Xin	FrC4
	SaA4	Cui, Lele	SaA2
Chai, Guohong	FrPo3	Cui, Long	FrC4
Chai, Hui	ThPo2	Cui, Shengguo	SaA2
Chang, Yanchun	FrPo4		
Chang, Ying	SaC3	- D -	
Chang, Yong	SaA2	_	
	SaC4	Dai, Xiaolin	SaB2
Chao, Zhuo	FrB2	Deng, Yimin	SaC2
Chen, Chunjie	FrPo3	Deng, Zhenchu	SaA2
Chen, Chunyi	ThPo1	Ding, Qingsong	ThPo2
Chen, Diansheng	FrB2		FrPo4

Ding, Qingsong
Ding, Shihong Ding, Shiqi Ding, Shuwei Ding, Yi Ding, Zhenyu Dong, Lanfang Dong, Lixin Dong, Min Dong, Xin
Dong, Yujing Dong, Zhaohui
Dong, Zhipeng Dong, Zhiyan Dou, Kai Dou, Xiaobo
Du, Jiazheng Du, Jingbo Du, Ruilong
DU, Rui-long Du, Shan Du, Xinyue Du, Yu Du, Yuhong Duan, Haibin
Duan, Jiwei Duan, Xingguang
- F -
Fan, Huijie Fan, Jingjing Fan, Li Fan, Wenjing
Fan, Xiaoliang Fan, Xiaotian Fan, Xinggang fan, yubo Fan, Yuhe Fan, Zhendong Fan, Zhun
Fang, Haitao Fang, Tao
Fang, Wei Fang, Yihua Feng, Guang Feng, Shuhuan Feng, Sichen Feng, Sicheng Feng, Wei Feng, Xiaojing Feng, Zhengyong Fu, Bofeng Fu, Chen Fu, Xi Fukuda, Toshio

FrPo4 FrC4 FrPo3 ThC4 FrPo4 FrPo4 FrPo3 FrB4 ThC4 ThPo2 ThPo2 FrB4 ThC4 ThPo2 ThPo2 ThA1 FrPo4 SaC4 FrPo4 FrPo4 FrPo4 FrPo4 FrPo4 ThPo1 ThPo2 ThPo2 ThPo1 FrPo3 FrPo3 ThPo1 FrPo3 ThA1 SaC2 SaB3 ThA1 ThB2 ThPo2 ThPo2 FrC2 FrC3 SaA2 ThPo2 ThPo1 SaA3 SaB3 ThC4 ThPo2 ThPo2 SaB4 FrPo4 FrPo4 FrPo4 FrPo4 FrB4 FrPo3 ThPo2 ThPo1 ThPo1 SaB4 ThB3 SaB2 SaB3 FrPo3 ThA1 FrPo3

- G -Gan, Xiaochuan Gan, Zhongxue Gang, Li Gao, Bingtuan Gao, Cheng Gao, Guang Gao, Guohua Gao. Haibo Gao, Haoze Gao, Jingxuan Gao, Shuang Gao, Song Gao, Yang Gao, Zihang Geng, Junyuan Geng, Yanli Gong, Daoxiong Gong, Haoqin Gong, Qingfeng Gong, Yongjun Gu, Jason GU, Jason Gu, Jason Gu, Liang Gu, Yuanbei Guan, Zhiguang Guo, Jiamin Guo, Lijuan Guo, Mingxing Guo, Qiang Guo, Shijie Guo, Weidong Guo, Xian Guo, Xiaobo Guo, Xiaowen Guo, Xin Guo, Yanchen Guo, Yuxuan - H -Han, Jianda Han, Jun Han, Renzhong Han, Zhe Han, Zhi Hao, Chenling Hao, Dongning Hao, Lina Haque, MD Shahriar

ThC3 FrA1 FrC4 FrPo3 ThPo1 FrPo3 SaC4 FrB4 SaA4 ThC3 FrPo3 ThC3 FrPo3 SaC4 SaC4 ThPo1 ThPo1 ThPo2 FrB4 ThPo1 ThPo1 SaB4 ThPo1 ThPo1 ThPo2 ThPo2 ThPo1 FrPo4 FrPo3 ThPo2 SaA3 FrPo3 ThC2 ThA1 FrPo4 FrPo3 FrB2 FrB2 SaA4 FrPo3 ThPo2 FrPo3 FrC4 ThB4 FrPo3 ThC2 FrPo3 ThPo1 ThA1 ThB2 ThB3 FrPo3 FrC3 SaA4 ThB4

ThPo2 FrC3

FrC2

ThPo2

SaB4

ThPo2

ThPo2

68

He, Bin

He, Kai

He, Lin He, Naifeng He, Qingqing He, Yuqing Heng, Liu Hill, Samuel Hong, Juncao Hong, Kunlong Hongguang, Wang Hou, Chaojian Hou, Funing Hou, Jianping Hou, Taogang Hu, Anqing Hu, Mingxi Hu, Qi Hu, Yongming Huang, Bin Huang, Binhua Huang, Chengxi Huang, Dongdong Huang, Gao Huang, He Huang, Huaxing Huang, Jun Huang, Kaiyuan Huang, Songhua Huang, Wentao Huang, WenTao Huang, Yuanhai Huang, Yuetong Huang, Yulin Huang, Ze Huang, Zhaoxiong Huang, Zhiyong Hui, Guangyu Hui, Yuan Huiying, Zhang Huo, Congcong Huo, Mengzhen - J -Ji, Mingze Ji, Ze Ji, Zhongzhi Ji, Zhu Jia, Guanglu Jia, Huidi Jia, Jie Jia, Tong Jiang, Acan Jiang, Feng Jiang, Haifeng Jiang, Haitao Jiang, Meilun Jiang, Tianyu Jiang, TongLei

FrPo4 SaA2 FrB3 FrPo4 ThPo2 FrB4 ThPo2 SaC4 ThPo1 ThC4 ThA1 SaB4 FrPo3 FrC4 FrPo3 FrPo4 FrPo4 FrPo3 SaA4 FrPo3 ThC4 FrPo3 ThPo1 ThPo1 FrPo3 ThPo2 ThPo2 SaC2 ThPo1 ThPo1 ThPo1 SaB4 SaC3 FrB4 FrPo3 FrPo4 FrC4 FrPo4 ThPo1 ThPo2 ThPo2 FrB2 FrB2 SaA4 ThPo1 ThC3 FrPo3 SaC2 SaA3 FrPo3 FrPo4 FrC3 ThB3 FrPo3 ThB3 FrPo4 FrPo4 FrPo4 FrPo3 FrA1 FrPo4 ThPo1 FrPo4 FrC3 ThB4

Jiang, Xiangyuan Jiang, Yihan Jiang, Yongkang Jiang, Zhishuai Jiao, Niandong Jie, Wenjun Jing, Fengmei Jing, Fengmei Jung, Fengren Ju, Zhongjin Jun, Zhao Junhao, Zhang	FrPo3 ThPo1 ThPo1 FrPo4 ThC3 ThPo1 SaA3 ThB3 SaA2 FrPo4 ThPo2 ThPo2
- K -	
Kalibala, Abdonoor Kan, Yanpeng Kang, Xiaoyang Kizilkaya, Burak	ThA1 FrB3 FrPo4 FrPo4 FrPo4 FrPo4 SaC2 FrC4
· · · · · · · · · · · · · · · · · · ·	

ThPo2

FrC2

-

Kui, Zhu KWOK, Chun

FrC3 SaC2 FrPo3 ThPo2 SaC2 ThPo2 ThPo1 FrA1 ThPo1 FrA1 SaC3 FrA1 ThPo2 ThPo1 FrB3
ThB3 ThPo2
ThPo2 FrPo3 ThB3 ThPo2 FrPo3 FrPo4 FrPo4
FrC3 FrC4 FrC3 ThPo1 FrB4 FrPo4 FrPo3 ThB4 ThPo2 ThPo1 ThB3 ThC2 ThC3 ThPo2

Li, Manhong	FrPo3	Liu, Boyang	SaA4
Li, Maoqin	FrPo3	Liu, Chunqi	ThPo1
Li, Meng	FrPo4	Liu, Daisong	FrC2
Li, Mengze	ThPo1	Liu, Dong	ThPo1
Li, Miao	ThA1	Liu, Guoliang	ThB4
Li, Muye	ThPo1		ThC3
Li, Ning	FrC3		FrPo3
-			
Li, Qiang	FrPo4		FrB2
Li, Qingwei	ThC4		FrB2
LI, Ruiqi	ThPo1		SaA4
Li, Shengjie	FrC3		SaA4
LI, Shuo	ThPo1	Liu, Hong	ThPo1
LI, Wayne Jason	FrC2		ThB3
Li, Wei	FrPo3	Liu, Hongmei	SaA3
Li, Wenhao	FrPo4	,g	SaB3
Li, Wenji	ThPo2	Liu, Jiacheng	ThPo2
		-	
Li, Wenmiao	SaC4	Liu, Jiaqing	ThPo2
LI, XIANG	ThA1	Liu, Jiaxian	ThPo1
Li, Xiaolong	FrB3	Liu, Jiaxin	ThB2
LI, Xiaoyan	ThB2	Liu, Jie	SaB3
Li, Xiaoyu	FrPo3	Liu, Jinfu	FrPo3
Li, Xin	ThPo2	Liu, Jixiao	ThA1
Li, Xingshuai	FrB3	Liu, Jiying	SaB3
Li, Xiongzi	ThPo2	Liu, Kai	SaA3
-	FrPo3	Liu, Kangcheng	SaA4
Li, Xuefeng		Liu, Kaligenelig	
Li, Yagang	SaC4		SaB3
Li, Yan	FrPo3	Liu, Keping	FrPo3
	SaC3	Liu, Kuo	ThA1
Li, Yawei	ThPo1	Liu, Lianqing	ThC3
	ThPo2		FrA1
Li, Yibin	FrA1		FrB3
	SaB2		FrC3
Li, Yibing	FrB3		FrC4
-		Liu Ligong	
Li, Ylxuan	ThPo2	Liu, Ligang	ThPo1
Li, Yong	ThB2	Liu, Lin	FrC3
Li, Yuehua	ThPo1	Liu, Lusheng	FrPo4
Li, Zengyong	SaA3		FrPo4
Li, Zhe	FrC3	Liu, Meiqi	SaC4
Li, ZhenYu	ThB2	Liu, Minghe	ThPo2
Li, Zhi	FrB4	. C	FrPo4
Li, Zhihao	ThA1		FrPo4
Li, Zhihong	ThC3		FrC4
		Liu Deinei	
Li, Zhuoyu	ThPo1	Liu, Peipei	ThC2
	ThPo1	Liu, Peng	ThPo1
Liang, Feng	FrPo4	Liu, Puchun	ThPo1
Liang, Guoyuan	FrPo3	Liu, Shaopeng	ThB2
Liang, Hong-Jie	ThC3	Liu, Shengshu	ThPo2
Liang, Peidong	ThC4	Liu, Shuang	ThC4
Liang, Shuli	SaB2	Liu, Tiantian	FrB2
Liang, Wei	ThPo1	Liu, Wei	ThPo2
,	SaA4	Liu, Wenyue	FrPo3
Liang, Xiaolong	SaC4	-	
C ¹ C		Liu, Xiaomeng	SaC3
Liang, Xingcan	FrPo3	Liu, Xiaoyu	SaA3
Liao, Junbo	ThB3	LIU, Xinyu	ThPo1
Liao, Ziwei	FrB2	Liu, Xinyu	FrC4
Lin, Daojing	ThC3		SaB2
Lin, Ge	ThPo1		SaC4
Lin, Lingjie	SaC3	Liu, Yan	ThPo1
Lin, Mingxing	FrC2	Liu, Yanan	ThPo1
,	FrC3	Liu, Yao	FrPo3
Lin, Xisheng	FrC3	Liu, Yifei	SaC4
-		-	
Lin, Yangnag	FrPo4	Liu, Yixiang	SaB2
Lin, Yuxuan	FrB3	Liu, Yixin	ThPo1
Ling, HeJing	FrPo3	Liu, Yu	SaB2
Ling, Ziqin	FrC4	Liu, Yuanbo	FrPo4
Liu, Baichen	ThB3	Liu, Yubo	FrC3
Liu, Baoguo	FrB3	Liu, Yuhong	ThPo1
-	FrC3	LIU, Yun	ThPo1

Liu, Zeyang LIU, ZHE Liu, Zhe Liu, Zhenyu Liu, Zhiman Liu, Zhiqin Liu, Zhongquan Lou, Yunjiang Lu, Fei Lu, Hongyu Lu, Shizeng Lu, Wenjie Lu, Xiang LU, Yang Lu, Zengpeng Luan, Huiqin Luan, Yiqing Luo, Fei Luo, Hao Luo, Jiawei Luo, Jingjing Luo, Sijin Luo, Zhanghai Luo, Zhehao Lv, Peng Lv, Pengpeng Lv, Rongke - M -Ma, Dong Ma, Hongbo Ma, Huanzhou Ma, Kaiwei Ma, Lifang Ma, Peili Ma, Sile Ma, Teng Ma, Tianle Ma, Tianyi Mao, Yongheng Mei, Yunlei Meng, Linghan Meng, Xianghe Meng, Yazhou Meng, Yuhao Mi, Tingting Miao, Xiaowei Min, Kang

- N -

Mu, Wei

Mo, Zhongjun

Mohamed, Abdelfatah

Ni, Dawei Ni, Fenglei

ThPo2 ThA1 FrPo3 ThPo2 ThB3 SaC2 FrPo3 ThC4 ThPo1 FrPo3 FrB2 SaA4 FrB2 FrPo4 SaA4 ThPo1 FrPo3 SaA3 SaB3 SaB3 FrPo4 FrB3 ThB4 FrPo4 FrPo4 FrC3 FrPo3 SaB2 FrPo3 SaA3 FrPo4 FrPo4 SaA4 FrPo3 FrB2 ThC3 FrPo3 ThPo2 FrPo3 SaA4 ThPo1 ThPo2 FrPo4 FrPo4 FrC4 FrA1 SaA3 SaA2 SaC4 SaA4 ThC4 FrPo3 FrPo3 ThB3 SaB3 ThA1 FrPo4 FrPo4 FrPo4 SaC2 FrPo3

Nie, Daming NIE, Da-ming Ning, Weibo Ning, Yuansheng Niu, Feng Niu, Huiqi Niu, Jianye Niu, Lan	ThPo2 ThPo1 ThPo2 FrPo4 ThA1 ThPo2 FrPo4 FrPo4 FrPo4 FrPo4 SaC2 ThC2
- 0 -	
Obidat, Omar Okeke, Henry Ou, Zhujian	FrC2 ThPo1 FrPo3
- P -	
Pan, Chenghang Pan, Fangyuan Pan, Hao Pan, Lizhi Pan, Mengyun Pan, Qiqi Pan, Shiyue Pan, Xin'an Pan, Zengxi Parron, Jesse Pei, Xuan Peng, Hanwei Peng, Liang	FrB2 FrPo4 ThB2 FrB4 FrC4 FrPo4 FrPo3 SaA3 ThC4 FrC2 FrPo3 ThC2 FrC2
- Q -	
Qi, Xianyu Qi, Zongqiang Qin, Hao Qin, Hongwei Qing, Huang Qingqing, Han Qiu, Quan Qiu, Zengshuai	FrB2 FrPo4 ThC4 ThPo2 SaC2 ThPo2 FrPo3 FrPo4
- R -	
Rao, Chenglong Ren, Qian Ren, Weiyan Ren, Zhipeng Rong, Weibin	ThB3 FrC3 SaA3 ThPo1 SaC4
- S -	
saleh Asheghabadi, Ahmad	ThC2
Sang, Fan Sang, Shengbo Shao, Long Shao, Shiliang Shen, Fangyan	FrA1 FrPo3 FrB2 SaB4 ThPo1 ThPo2 ThPo2
Shen, Shaobin Shen, Xin Sheng, Zhoujun	ThPo1 ThC3 ThPo1

ThB3

Sheng, Zhoujun	ThPo1	Tang, Youan	FrPo3
Shi, Chaoguo	FrC3	Tian, Guohui	ThPo1
-			
Shi, Jialin	FrA1		ThB2
Shi, Junyu	FrPo4		FrPo3
Shi, Kaiqi	SaB4		FrB2
Shi, Qing	FrPo3		FrB2
Shi, Xiaojun	ThB3		SaA4
Shi, Ze	ThPo2	Tian, Huanyu	ThA1
	ThPo2	Tian, Jiangren	ThPo2
		-	
Shiee Zadeh Yazdi, Behruz	ThC2	Tian, Jiazheng	FrPo4
Shu, Fei	ThPo2	Tian, Qiyan	ThB4
Shu, Xin	ThB3	Tian, Qunhong	FrPo3
		-	
So, Chun Ho	FrC4	Tian, Yu	FrPo4
Song, Bo	FrPo4	TIAN, Yuqing	FrC2
Song, Kangping	FrPo4		FrC2
Song, Rui	FrA1	Tilloo, Pallavi	FrC2
Solig, Rui			
	SaB2	Tong, Lina	FrC2
Song, Xuwei	ThPo2		
Song, Yifeng	ThB3		
eeng, mong		- U -	
	SaA2		
	SaA3	Umezu, Shinjiro	ThA1
	SaC4		
Song Vingijo	SaB3		
Song, Yingjie		- V -	
Song, Zuoting	FrPo4	■	
Su, Chanmin	FrA1	Van Duin, Stephen	ThC4
Su, Chengzhi	ThPo2	Vu, Trong Thien	ThC4
ou, onengzni		va, mong mien	1104
	ThPo2		
	ThPo2	۱۸/	
	ThC4	- W -	
Su Dong		Mon Linong	ThDat
Su, Peng	ThC2	Wan, Lipeng	ThPo2
	FrC3	Wang, Aiping	FrPo4
	FrC3		FrPo4
Su, Yuanzhe	FrPo3		FrPo4
-			
Sui, Haolin	FrPo3		SaC2
Sui, Jin	SaA2	Wang, Ben	ThPo2
Sun, Anbin	ThPo2	-	FrB3
		Wang Da	
Sun, Chenglei	FrPo4	Wang, Bo	FrC2
Sun, Cong	ThPo1	Wang, Can	ThPo2
Sun, Hao	ThPo2		ThPo2
	FrPo4	Wang, Chao	ThB4
		Wang, Chao	
	FrPo4		SaB3
	FrC4	Wang, Cong	ThB4
Sun, Jianwei	FrB3		SaA2
Sun, Miao	FrPo4		SaC3
Sun, Peiyang	FrPo4	Wang, Enguo	ThPo2
Sun, Shijie	SaA4		ThPo2
Sun, Xiaojun	FrPo4		ThC4
		-	
Sun, Xiaoyi	ThC2	Wang, Fanyu	FrPo4
Sun, Yingzhe	FrPo3		FrC3
Sun, Yongbin	ThA1	Wang, Fei	ThPo2
	FrB4		
Sun, Yue		Wang, Fuhao	FrPo4
Sun, Zhiyong	FrPo4	Wang, Gang	SaB3
Sun, Zilong	ThC3	Wang, Geng	ThPo1
		Wang, Hao	FrPo3
		•	
- T -		Wang, Hesheng	ThA1
-		Wang, Hongbo	FrPo4
Tan, Dongpo	FrC4		FrPo4
TAN, Dongxu	ThPo1		SaC2
Tan, Yinglun	ThPo2	Wang, Hongguang	ThB3
	FrC4		SaA2
Tang, Bo	ThPo1		SaA3
		Wong Hum	
Tang, Dawei	SaC4	Wang, Huan	FrC4
Tang, Tao	FrPo3	Wang, Jianwen	FrPo4
Tang, Yandong	ThB2	Wang, Jiawei	FrPo4
<u>.</u>	ThB3	Wang, Junkongshuai	FrPo4
		wang, Julikongshudi	
	FrPo3		FrPo4
Tang, Yiming	ThPo1		FrPo4
Tang, Yong	SaC4		FrPo4
. ang, i ong	0004		111 04

Wang, J Wang, J Wang, H Wang, H Wang, L Wang, L	Kaixuan Keyi Kun
Wang, L Wang, L Wang, N	_ong
Wang, N Wang, N Wang, N	Na
Wang, F Wang, F Wang, F	
Wang, F Wang, S Wang, S	Shengfan Shuai Shuangyin Sikai Siyu
Wang, S Wang, 1 Wang, 1	Su Гао Гing
Wang, V	Wei
Wang, > WANG, Wang, >	Venxue Kiaoai Kiaoduo Kiaohong Kiaojun Xiaoteng Kiaowen Kingyuan Kue Yang
Wang, M Wang, M Wang, M Wang, M Wang, M Wang, M	Yifan Yifei Yihan Yongqiang Yu Yugang Yuling Yuling Yuxiang Yuzhe Zhen Zhen Zhenhan Zhenyu Zhidong Zhipeng Zhuo Hen

Wei, Shouqi Wen, Kaiqiang
Wen, Yongan Weng, Changshui Wu, Fangzheng Wu, Guo Wu, Hao
Wu, Jialing Wu, Lianquan Wu, Peihui Wu, Qiang
Wu, Xin yu
Wu, Xinyu
Wu, Yingli
- X - Xi, Ning
XI, Ning Xi, Ning
Xia, Siyu Xia, Xinkai Xiang, Guo Xiang, Hongbiao Xiao, Xiaolong Xie, Dongsheng Xie, Hongzhao Xie, Hui Xie, Ping Xie, Qinghua Xie, Shihui Xie, Tao XIN, Chuanlong Xiong, Junjie Xu, Aidong Xu, Chaohai Xu, Chenggen Xu, Chenggen Xu, Chenggen Xu, Fengyu Xu, Gongcheng Xu, Han Xu, Jing Xu, Lanying
Xu, Linsen
Xu, Manman Xu, WenXin
Xu, Yangfan Xu, Yanlong Xu, Yuexuan

SaC2 ThB3

FrA1

ThB4

ThC4

SaC3

SaC3

ThPo2

ThPo1

ThPo2

FrPo3

ThC2

FrC3

ThPo1 ThPo2

ThC2

ThPo1 FrPo4

FrPo4

FrPo4

SaB2

ThPo2

FrPo4 FrC3 ThPo1 ThC2

SaB2

FrC2

SaA3

FrPo3

ThC4

ThPo1

ThPo2

FrA1

FrB2

FrC2

FrC3

FrPo4

FrB3

FrB2

FrPo3

SaB2

FrC3

ThB4

ThPo1

FrPo4

ThPo2

ThPo2

ThB2

ThB3

FrC3

SaB4

ThB2

ThPo1

FrPo4

FrPo3

FrPo3

SaB3

FrC3

SaB3 FrB3

ThC3

ThPo2

FrPo3

ThA1

FrPo3

FrPo4

FrB3

ThPo1 ThPo2 FrC3 ThPo1 ThPo2 ThPo1 FrPo3 FrB2 ThC2 ThB2 FrPo4 ThPo1 ThPo1 ThPo1 ThPo2 FrPo3 ThPo2 FrPo3 FrPo3 ThB4 FrA1 FrPo3 FrC2 FrC2 FrC3 FrC4 SaB2 FrPo3 FrB2 FrB2 SaB3 FrPo3 ThA1 FrPo3 SaC4 FrPo3 FrC2 FrC3 FrC3 ThPo1 FrPo4 FrB4 FrC4 ThPo1 FrB3 ThC3 FrPo3 FrB3 ThC2 FrA1 ThPo1 ThPo1 ThPo1 FrPo3 FrPo3 FrB3 SaB4 FrC4 FrPo4 ThB2 ThPo2 FrPo4

FrPo4

FrPo3

ThPo1

Xu, Yuexuan	FrC4	Yu, Sujun
Xu, Yundou	FrPo4	ru, oujun
Xu, Zhen	ThC4	Yuan, Bo
Xuan, Bokai	ThPo2	Yuan, Chao
	FrPo4	Yuan, Guangsong
	FrC4	Yuan, Hongxue
	SaC4	Yuan, Jianhua
Xue, Feng	SaB3	Yuan, Wenbo
	SaC3	
Xue, Yuxuan	FrC4	Yuan, Xudong
		Yuan, Ying
- Y -		Yuan, Zehao
- f -		Yue, Chao
Yan, Bingjun	FrB4	Yue, Shizhuo
Yan, Wenjun	FrPo3	
	FrPo3	- Z -
Yan, Zhuang	ThPo1	- Z -
Yang, De	ThPo1	Zang, Xizhe
Yang, Dongxing	ThPo2	Zeng, Kang
Yang, Fengyu	SaB4	Zeng, Qingyi
Yang, Hongyu	ThPo1	Zeng, Wei
	ThPo1	Zeng, Yuanming
Yang, Junbo	SaA2	Zeng, Zhen
Yang, Kun	FrB2	Zeng, Zheng
Yang, Lei	FrPo3	Zha, Changhai
Yang, Liying	FrPo4	Zhai, Baoqi
Yang, Mingxing	ThC3	
Yang, Qianfei	ThPo1	Zhan, Gege
Yang, Shangkun	ThPo1	
Yang, Tie	FrA1	Zhang, Aiqun
	FrC3	Zhang, Aixuan
Yang, Wenguang	FrC3	Zhang, Bi
Yang, Xiangdong	FrB2	
Yang, Xuejiao	ThB4	
rang, radjad	SaC3	
Yang, Yang	FrC3	Zhang, Biao
Yang, Yongliang	FrC4	Zhang, Boxuan
Yang, Zhenyu	SaA2	Zhang, Bozhen
Yang, Zhilin	SaB4	Zhang, Changzheng
Yao, Jiantao	FrPo4	Zhang, Chenheng
Yao, Mingwen	ThPo1	Zhang, Chentao
Yao, Qingfeng	FrPo3	Zhang, Chenyu
Yao, Wenhao	ThPo2	Zhang, Dagan
Ye, Chaoxiang	FrPo3	Zhang, Fan
Ye, Chuantao	SaC2	Zhang, Fan
Ye, Guoshan	ThPo1	Zhang, Feilong
	ThPo1	Zhang, Guangwei
Ye, Jiajie	SaB2	Zhang, Guangyu
Ye, Jiancong	ThPo2	Zhang, Guohua
Ye, Ma	SaB2	Zhang, Hao
Ye, Xin	FrPo3	Zhang, Jiaji
Yi, Xia	ThPo2	Zhang, Jianglong
Yi, Zhengkun	FrPo3	Zhang, Jianhua
Yong, Jiang	FrPo4	Zhang, Jianyi
Tong, Slang	FrPo4	Zhang, Jianyi
Yu, Danyang	ThPo2	Zhang, Jing
Yu, Haibo	FrB3	Zhang, Jing
Yu, Hang	FrPo3	Zhang, Jiwen
ru, riang		•
Yu, Hongliang	FrPo4 FrB2	Zhang, Jun Zhang, Junhao
		-
Yu, Huan Yu, Jianiun	ThC2	Zhang, Kexin
Yu, Jianjun	ThPo1	Zhang Lai
Vu Lindi	ThPo2	Zhang, Lei Zhang, Li
Yu, Lingli	ThB4	Zhang, Li
V. Ningha	ThC2	Zhang, Lihua
Yu, Ningbo	ThC2	
Yu, Peng	FrA1	
	FrC3	

ThPo2 FrPo3 FrPo3 ThPo1 ThA1 ThB3 FrPo3 FrC2 ThPo1 ThPo1 SaA2 FrC3 FrB4

SaB2 FrPo4 ThC2 FrPo4 ThPo1 ThPo2 ThB4 ThPo2 ThB4 SaA2 FrPo4 FrPo4 FrPo3 SaA3 ThPo1 ThPo2 ThC3 SaA2 ThPo1 SaA2 FrPo3 ThC4 FrPo3 ThC4 ThB2 FrPo4 ThC2 FrB2 ThC3 FrA1 FrPo4 ThPo2 SaC4 FrPo3 FrPo3 ThB4 FrPo3 FrPo3 FrPo4 FrPo4 SaB2 ThB2 SaB4 FrPo4 FrPo4 SaB4 FrC3 FrPo4 FrPo4 FrPo4

FrPo4

Zhang, Lihua Zhang, Liming
Zhang, Lixin Zhang, Lixun
Zhang, Mian Zhang, Mingjia Zhang, Minglu
Zhang, Pu
Zhang, Qifeng
Zhang, Qin Zhang, Qinghui Zhang, Qinjian
Zhang, Qinran
Zhang, Ruizhe Zhang, Shijie Zhang, Shixin Zhang, Shutong Zhang, Sichao Zhang, Songna Zhang, TaiSheng Zhang, Tengyu Zhang, Tianyao Zhang, Tianyao Zhang, Wei Zhang, Wenjun Zhang, Wenqi Zhang, Wenxiang
Zhang, Wenyan Zhang, Xianmiao Zhang, Xiaobin Zhang, Xiaochen Zhang, Xiaocheng Zhang, Xiaodong Zhang, Xiaojun
Zhang, Xu Zhang, Xuan Zhang, Xuemin Zhang, Xueze
Zhang, Yan Zhang, Yide
Zhang, Ying Zhang, Yinlong
Zhang, Yongshun Zhang, Yuepeng
Zhang, Yuhang
Zhang, Yunxiu Zhang, Zhen
Zhang, Zhenguo Zhang, Zhihui

SaC2
ThPo2
ThPo2
FrPo3 SaB3
SaC3
SaB3
FrC2 ThPo2
FrPo3
ThPo1 ThPo1
ThB4
FrPo3
SaA2 SaC3
ThPo2
ThB4
FrB3 FrC3
ThC2 FrC3
FrC3 ThC4
FrPo3
ThPo2
ThPo1 ThPo1
FrPo4
FrB3
FrPo3 FrB3
SaA3
ThPo2 SaA4
SaA4 ThC4
FrPo3
FrPo3 FrPo4
SaB3
FrA1
ThPo2 ThPo2
ThB3
ThPo2
FrPo3 FrB3
FrPo4
FrPo3 FrPo4
FrP04 FrP04
FrPo4
SaC2 FrPo3
ThC3
FrB2
FrB4 ThPo1
SaA4
FrPo4
ThC2 FrC4
ThB4
FrB4 SaC3
FrB3
SaB4
FrPo3 ThPo1

Zhang, Zhitao Zhang, Zhongwei Zhang, Zihao Zhang, Zihao Zhang, Ziqiang Zhao, Di Zhao, Guodong Zhao, Huanyu Zhao, Huanyu Zhao, Jianping Zhao, Jianping Zhao, Jiawei Zhao, Ligun Zhao, Lingyan Zhao, Man Zhao, Mingyue Zhao, Qiang Zhao, Xinchun Zhao, Xingang
Zhao, Xinyang
Zhao, Xueyi Zhao, Yafei Zhao, Yongsheng Zhao, Yufei Zhao, Yuliang
Zhao, Zhe Zheng, Chenxi Zheng, Shuaishuai Zheng, Xinhui Zheng, Xiongbo Zhong, Huiru ZHONG, LING
Zhong, Xu Zhou, Dongyi Zhou, Fengyu Zhou, Jian
Zhou, Kaijun Zhou, Peng Zhou, Qigao Zhou, Shuang Zhou, Wenli
Zhou, Xin
Zhou, Xiufang Zhou, Xufeng Zhou, Yanmin Zhou, Zhenning Zhu, Baixian Zhu, Guijie
Zhu, Jiakai Zhu, Lei Zhu, Liujuan
Zhu, Lizhong Zhu, Longxing Zhu, Michelle Zhu, Shiqiang ZHU, Shi-qiang Zhu, Xiaomin

SaB4

SaA3

SaA4 FrPo3

ThPo1

FrPo3

FrC4

FrPo3

ThPo1

ThPo1

ThC4

FrPo3

FrA1

FrC2

SaB3

ThB2

ThPo1 ThPo2 ThC3

FrPo3 FrPo3

FrB2

FrPo3

FrPo4

FrB2

ThB3 FrPo4 FrPo4

FrB2

ThPo1

ThA1

ThB4

SaA3

ThB3

ThPo1 ThPo2

ThPo2

SaC4

ThPo1

FrPo3 FrPo3

ThB4

FrC3

ThC4

FrPo3

ThPo1 ThPo1

ThPo1 ThPo2 ThPo2

FrB4

FrPo4

ThPo2

FrPo3

ThPo2

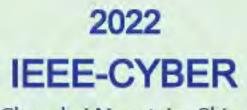
ThPo2 ThPo2

ThPo2

FrPo3

FrPo3 FrB2 SaA4

ThPo2


ThPo2

ThPo2

ThPo1 ThPo2

FrC2

Zhu, Xing	FrPo4
	FrC3
Zhu, Xinggao	SaA3
Zhu, Xuedong	FrC3
Zhu, Zhikun	FrB2
	FrB2
Zhu, Zhiwei	ThC4
Zou, Kehan	FrPo3
Zuo, Guokun	FrPo3
Zuo, Guoyu	ThPo1
	ThPo1
Zuo, Kexin	ThPo2
	FrB3

Changbai Mountain, China

T OU

